On nodal prime Fano threefolds of degree 10

Olivier DEBARRE (joint with Atanas ILIEV and Laurent MANIVEL)

École Normale Supérieure de Paris

Trento, September 2010

 $\begin{array}{c} \mbox{Fano threefolds}\\ \mbox{The nodal Fano threefold X_{10}}\\ \mbox{Reconstructing X_{10}}\\ \mbox{Verra threefolds}\\ \mbox{Verra threefolds}\\ \mbox{Period maps} \end{array}$

A Fano variety is a complex projective variety X with $-K_X$ ample.

・ロン ・回 と ・ヨン ・ヨン

A Fano variety is a complex projective variety X with $-K_X$ ample.

Smooth Fano threefolds form 105 irreducible families:

イロン イヨン イヨン イヨン

 $\begin{array}{c} \mbox{Fano threefolds}\\ \mbox{The nodal Fano threefold X_{10}}\\ \mbox{Reconstructing X_{10}}\\ \mbox{Verra threefolds}\\ \mbox{Verra threefolds}\\ \mbox{Period maps} \end{array}$

A Fano variety is a complex projective variety X with $-K_X$ ample.

Smooth Fano threefolds form 105 irreducible families:

• 88 with Picard numbers > 1;

イロン イヨン イヨン イヨン

Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers > 1;
- 17 with Picard number 1:

イロト イポト イヨト イヨト

Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers > 1;
- 17 with Picard number 1:
 - 7 with indices > 1;

イロト イポト イヨト イヨト

Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers > 1;
- 17 with Picard number 1:
 - 7 with indices > 1;
 - 10 with index 1:

イロト イポト イヨト イヨト

Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers > 1;
- 17 with Picard number 1:
 - 7 with indices > 1;
 - 10 with index 1: one for each degree in $\{2, 4, 6, 8, \dots, 18, 22\}$.

イロト イポト イヨト イヨト

Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers > 1;
- 17 with Picard number 1:
 - 7 with indices > 1;
 - 10 with index 1: one for each degree in $\{2, 4, 6, 8, \dots, 18, 22\}$.

 X_{10} : Fano threefold with Picard number 1, index 1, and degree 10.

The fourfold W_O and the threefold X_O in P_O^6 . The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of

・ロン ・回と ・ヨン ・ヨン

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

- A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of
 - the Grassmannian $G(2, V_5)$,

・ロン ・回 と ・ ヨ と ・ ヨ と

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi: \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

- A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of
 - the Grassmannian $G(2, V_5)$,
 - a general **P**⁷,

イロン 不同と 不同と 不同と

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi: \widetilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

- A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of
 - the Grassmannian $G(2, V_5)$,
 - a general **P**⁷,
 - a general quadric Ω ,

イロン イヨン イヨン イヨン

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi: \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

- A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of
 - the Grassmannian $G(2, V_5)$,
 - a general **P**⁷,
 - a general quadric Ω ,

and

$$X_{10} = G(2, V_5) \cap \mathbf{P}^7 \cap \Omega \subset \mathbf{P}^7$$

is anticanonically embedded.

イロト イポト イヨト イヨト

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi: \widetilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

- A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of
 - the Grassmannian $G(2, V_5)$,
 - a general **P**⁷,
 - a general quadric Ω,

and

$$X_{10} = G(2, V_5) \cap \mathbf{P}^7 \cap \Omega \subset \mathbf{P}^7$$

is anticanonically embedded.

Note:

• $W = G(2, V_5) \cap \mathbf{P}^7$ is a smooth fourfold, independent of \mathbf{P}^7 ;

イロン イヨン イヨン イヨン

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi: \widetilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

- A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of
 - the Grassmannian $G(2, V_5)$,
 - a general **P**⁷,
 - a general quadric Ω,

and

$$X_{10} = G(2, V_5) \cap \mathbf{P}^7 \cap \Omega \subset \mathbf{P}^7$$

is anticanonically embedded.

Note:

- $W = G(2, V_5) \cap \mathbf{P}^7$ is a smooth fourfold, independent of \mathbf{P}^7 ;
- for Ω general quadric cone with vertex $O \in W$ general, $X = W \cap \Omega$ has a single node at O.

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi: \widetilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

- A general X_{10} is the intersection in $\mathbf{P}(\wedge^2 V_5) = \mathbf{P}^9$ of
 - the Grassmannian $G(2, V_5)$,
 - a general P⁷,
 - a general quadric Ω ,

and

$$X_{10} = G(2, V_5) \cap \mathbf{P}^7 \cap \Omega \subset \mathbf{P}^7$$

is anticanonically embedded.

Note:

- $W = G(2, V_5) \cap \mathbf{P}^7$ is a smooth fourfold, independent of \mathbf{P}^7 ;
- for Ω general quadric cone with vertex $O \in W$ general, $X = W \cap \Omega$ has a single node at O.

From now on, $X \subset \mathbf{P}^7$ will be such a nodal Fano threefold.

(D) (A) (A) (A) (A)

The fourfold W_O and the threefold X_O in P_O^6 . The double étale cover $\pi : \overline{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

If $p_O: \mathbf{P}^7 \dashrightarrow \mathbf{P}_O^6$ is the projection from O,

イロン イヨン イヨン イヨン

The fourfold W_O and the threefold X_O in P_O^5 . The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

If $p_O: \mathbf{P}^7 \dashrightarrow \mathbf{P}_O^6$ is the projection from O,

W_O := p_O(W) ⊂ P⁶_O is the base-locus of a pencil (Ω_p)_{p∈Γ1} of quadrics of rank 6

イロト イポト イヨト イヨト

The fourfold W_O and the threefold X_O in P_O^5 . The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

If $p_O: \mathbf{P}^7 \dashrightarrow \mathbf{P}_O^6$ is the projection from O,

W_O := p_O(W) ⊂ P⁶_O is the base-locus of a pencil (Ω_p)_{p∈Γ1} of quadrics of rank 6 (all such pencils are isomorphic);

The fourfold W_O and the threefold X_O in P_O^5 . The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

If $p_O : \mathbf{P}^7 \dashrightarrow \mathbf{P}_O^6$ is the projection from O,

- W_O := p_O(W) ⊂ P⁶_O is the base-locus of a pencil (Ω_p)_{p∈Γ1} of quadrics of rank 6 (all such pencils are isomorphic);
- W_O contains $\mathbf{P}^3_W := p_O(\mathbf{T}_{W,O});$

The fourfold W_O and the threefold X_O in P_O^6 . The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

If $p_O : \mathbf{P}^7 \dashrightarrow \mathbf{P}_O^6$ is the projection from O,

- W_O := p_O(W) ⊂ P⁶_O is the base-locus of a pencil (Ω_p)_{p∈Γ1} of quadrics of rank 6 (all such pencils are isomorphic);
- W_O contains $\mathbf{P}^3_W := p_O(\mathbf{T}_{W,O});$
- Sing(W_O) is the locus of the vertices of the Ω_p, a smooth rational cubic curve in P³_W;

The fourfold W_O and the threefold X_O in P_O^6 . The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

If $p_O : \mathbf{P}^7 \dashrightarrow \mathbf{P}_O^6$ is the projection from O,

- W_O := p_O(W) ⊂ P⁶_O is the base-locus of a pencil (Ω_p)_{p∈Γ1} of quadrics of rank 6 (all such pencils are isomorphic);
- W_O contains $\mathbf{P}^3_W := p_O(\mathbf{T}_{W,O});$
- Sing(W_O) is the locus of the vertices of the Ω_p, a smooth rational cubic curve in P³_W;

and

• $X_O := p_O(X) \subset \mathbf{P}_O^6$ is the intersection of W_O with the general quadric $\Omega_O := p_O(\Omega)$;

The fourfold W_O and the threefold X_O in P_O^6 . The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

If $p_O: \mathbf{P}^7 \dashrightarrow \mathbf{P}_O^6$ is the projection from O,

- W_O := p_O(W) ⊂ P⁶_O is the base-locus of a pencil (Ω_p)_{p∈Γ1} of quadrics of rank 6 (all such pencils are isomorphic);
- W_O contains $\mathbf{P}^3_W := p_O(\mathbf{T}_{W,O});$
- Sing(W_O) is the locus of the vertices of the Ω_p, a smooth rational cubic curve in P³_W;

and

- $X_O := p_O(X) \subset \mathbf{P}_O^6$ is the intersection of W_O with the general quadric $\Omega_O := p_O(\Omega)$;
- Sing(X_O) = Sing(W_O) ∩ Ω_O consists of six points (corresponding to the six lines in X through O).

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

The threefold X_O is therefore the base-locus of the net of quadrics $\Pi := \langle \Omega_O, \Gamma_1 \rangle$ in \mathbf{P}_O^6 . Consider

イロト イヨト イヨト イヨト

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

The threefold X_O is therefore the base-locus of the net of quadrics $\Pi := \langle \Omega_O, \Gamma_1 \rangle$ in \mathbf{P}_O^6 . Consider

• the discriminant curve $\Gamma_7 \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

The threefold X_O is therefore the base-locus of the net of quadrics $\Pi := \langle \Omega_O, \Gamma_1 \rangle$ in \mathbf{P}_O^6 . Consider

- the discriminant curve $\Gamma_7 \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
 - the line Γ_1 of quadrics containing W_O and

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

The threefold X_O is therefore the base-locus of the net of quadrics $\Pi := \langle \Omega_O, \Gamma_1 \rangle$ in \mathbf{P}_O^6 . Consider

- the discriminant curve $\Gamma_7 \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
 - the line Γ_1 of quadrics containing W_O and
 - a smooth sextic Γ_6 meeting Γ_1 transversely

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

The threefold X_O is therefore the base-locus of the net of quadrics $\Pi := \langle \Omega_O, \Gamma_1 \rangle$ in \mathbf{P}_O^6 . Consider

- the discriminant curve $\Gamma_7 \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
 - the line Γ_1 of quadrics containing W_O and
 - a smooth sextic Γ₆ meeting Γ₁ transversely at the six points corresponding to the quadrics in Γ₁ with vertices at the six singular points of X_O;

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \tilde{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

The threefold X_O is therefore the base-locus of the net of quadrics $\Pi := \langle \Omega_O, \Gamma_1 \rangle$ in \mathbf{P}_O^6 . Consider

- the discriminant curve $\Gamma_7 \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
 - the line Γ_1 of quadrics containing W_O and
 - a smooth sextic Γ₆ meeting Γ₁ transversely at the six points corresponding to the quadrics in Γ₁ with vertices at the six singular points of X_O;
- the double étale cover

$$\pi:\widetilde{\Gamma}_{6}\cup\Gamma_{1}^{1}\cup\Gamma_{1}^{2}\to\Gamma_{6}\cup\Gamma_{1}$$

corresponding to the choice of a family of 3-planes contained in a quadric of rank 6 in Π (\mathbf{P}_W^3 defines the component Γ_1^1).

The fourfold W_O and the threefold X_O in P_O^6 . The double étale cover $\pi : \overline{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

As the base-locus of the net of quadrics Π , the threefold X_O has a birational conic bundle structure $p_\ell : X \dashrightarrow \Pi$:

<ロ> (日) (日) (日) (日) (日)

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \overline{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

As the base-locus of the net of quadrics Π , the threefold X_O has a birational conic bundle structure $p_\ell : X \dashrightarrow \Pi$:

• choose a general line $\ell \subset X_O$;

<ロ> (日) (日) (日) (日) (日)

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \overline{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

As the base-locus of the net of quadrics Π , the threefold X_O has a birational conic bundle structure $p_\ell : X \dashrightarrow \Pi$:

- choose a general line $\ell \subset X_O$;
- to x ∈ X_O general, associate the unique quadric in Π containing the 2-plane ⟨x, ℓ⟩.

イロト イポト イヨト イヨト

The fourfold W_O and the threefold X_O in P_O^6 The double étale cover $\pi : \overline{\Gamma}_6 \to \Gamma_6$ A (birational) conic bundle structure on X

As the base-locus of the net of quadrics Π , the threefold X_O has a birational conic bundle structure $p_\ell : X \dashrightarrow \Pi$:

- choose a general line $\ell \subset X_O$;
- to x ∈ X_O general, associate the unique quadric in Π containing the 2-plane ⟨x, ℓ⟩.

The discriminant curve is $\Gamma_7 = \Gamma_6 \cup \Gamma_1$.

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Let $\mathscr{X}_{10}^{\text{nodal}}$ be the 21-dim'l moduli stack for our nodal X.

・ロン ・回 と ・ ヨ と ・ ヨ と

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Let $\mathscr{X}_{10}^{\text{nodal}}$ be the 21-dim'l moduli stack for our nodal X.

Theorem

There is a birational isomorphism

$$\mathscr{X}_{10}^{\text{nodal}} \xrightarrow{\sim} \left\{ \begin{array}{c} triples \\ (\Gamma_6, \Gamma_1, M) \end{array} \right\} / isom.$$

where *M* is an even invertible theta-characteristic on $\Gamma_6 \cup \Gamma_1$.

イロン イヨン イヨン イヨン
Definition of the isomorphism and injectivity Surjectivity Special surfaces

Sketch of proof. Given X, the curve $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ parametrizes singular quadrics in the net Π of quadrics containing X_O .

イロト イヨト イヨト イヨト

 Fano threefolds

 The nodal Fano threefold X10

 Reconstructing X10

 Verra threefolds

 Period maps

Sketch of proof. Given X, the curve $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ parametrizes singular quadrics in the net Π of quadrics containing X_O . Let

$$egin{array}{rcl} v: & \mathsf{\Gamma}_7 & \hookrightarrow & \mathbf{P}^6_O \ & & & & \mathcal{P}^{}_O \ & & & & \mathcal{P}^{}_O \end{array} \end{array}$$

イロト イヨト イヨト イヨト

Sketch of proof. Given X, the curve $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ parametrizes singular quadrics in the net Π of quadrics containing X_O . Let

and define

$$M_X = v^* \mathscr{O}_{\mathbf{P}^6_{\mathcal{O}}}(1) \otimes \mathscr{O}_{\Gamma_7}(-1).$$

イロト イヨト イヨト イヨト

Sketch of proof. Given X, the curve $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ parametrizes singular quadrics in the net Π of quadrics containing X_O . Let

and define

$$M_X = v^* \mathscr{O}_{\mathbf{P}^6_O}(1) \otimes \mathscr{O}_{\Gamma_7}(-1).$$

Then (Beauville),

• M_X is a theta-characteristic and $H^0(\Gamma_7, M_X) = 0$;

イロト イポト イヨト イヨト

Sketch of proof. Given X, the curve $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ parametrizes singular quadrics in the net Π of quadrics containing X_O . Let

and define

$$M_X = v^* \mathscr{O}_{\mathbf{P}^6_O}(1) \otimes \mathscr{O}_{\Gamma_7}(-1).$$

Then (Beauville),

- M_X is a theta-characteristic and $H^0(\Gamma_7, M_X) = 0$;
- the double étale cover π : Γ₇ → Γ₇ is defined by the line bundle η = M_X(-2), of order 2;

イロン イヨン イヨン イヨン

Sketch of proof. Given X, the curve $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ parametrizes singular quadrics in the net Π of quadrics containing X_O . Let

$$egin{array}{rcl} v : & \mathsf{\Gamma}_7 & \hookrightarrow & \mathbf{P}^6_O \ & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & &$$

and define

$$M_X = v^* \mathscr{O}_{\mathbf{P}^6_O}(1) \otimes \mathscr{O}_{\Gamma_7}(-1).$$

Then (Beauville),

- M_X is a theta-characteristic and $H^0(\Gamma_7, M_X) = 0$;
- the double étale cover π : Γ₇ → Γ₇ is defined by the line bundle η = M_X(-2), of order 2;
- $X_O \subset \mathbf{P}_O^6$ is determined up to projective isomorphism by the pair (Γ_7, M_X).

・ロン ・回と ・ヨン・

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

• general curves Γ_6 and Γ_1 in Π ,

・ロン ・回と ・ヨン ・ヨン

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

- general curves Γ_6 and Γ_1 in $\Pi,$
- an invertible theta-characteristic M on $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ with $H^0(\Gamma_7, M) = 0$

・ロット (日本) (日本) (日本)

3

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

- general curves Γ_6 and Γ_1 in $\Pi,$
- an invertible theta-characteristic M on $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ with $H^0(\Gamma_7, M) = 0$ (such an M always exists (Catanese)),

・ロト ・回ト ・ヨト ・ヨト

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

- general curves Γ_6 and Γ_1 in $\Pi,$
- an invertible theta-characteristic M on $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ with $H^0(\Gamma_7, M) = 0$ (such an M always exists (Catanese)),

there is a resolution

$$0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \stackrel{A}{\longrightarrow} \mathscr{O}_{\Pi}(-1)^{\oplus 7} \longrightarrow M \longrightarrow 0,$$

where (Dixon, Catanese, Beauville)

・ロン ・回と ・ヨン ・ヨン

3

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

- general curves Γ_6 and Γ_1 in $\Pi,$
- an invertible theta-characteristic M on $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ with $H^0(\Gamma_7, M) = 0$ (such an M always exists (Catanese)),

there is a resolution

$$0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \stackrel{A}{\longrightarrow} \mathscr{O}_{\Pi}(-1)^{\oplus 7} \longrightarrow M \longrightarrow 0,$$

where (Dixon, Catanese, Beauville)

• A is a 7×7 symmetric matrix of linear forms;

・ロン ・回と ・ヨン・

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

- general curves Γ_6 and Γ_1 in $\Pi,$
- an invertible theta-characteristic M on $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ with $H^0(\Gamma_7, M) = 0$ (such an M always exists (Catanese)),

there is a resolution

$$0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \stackrel{A}{\longrightarrow} \mathscr{O}_{\Pi}(-1)^{\oplus 7} \longrightarrow M \longrightarrow 0,$$

where (Dixon, Catanese, Beauville)

- A is a 7×7 symmetric matrix of linear forms;
- det(A) is an equation for Γ_7 ;

・ロン ・回と ・ヨン ・ヨン

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

- general curves Γ_6 and Γ_1 in $\Pi,$
- an invertible theta-characteristic M on $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ with $H^0(\Gamma_7, M) = 0$ (such an M always exists (Catanese)),

there is a resolution

$$0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \stackrel{A}{\longrightarrow} \mathscr{O}_{\Pi}(-1)^{\oplus 7} \longrightarrow M \longrightarrow 0,$$

where (Dixon, Catanese, Beauville)

- A is a 7×7 symmetric matrix of linear forms;
- det(A) is an equation for Γ_7 ;
- A defines a net of quadrics in \mathbf{P}_O^6 whose base-locus X_O is the intersection of W_O with a smooth quadric.

・ロト ・回ト ・ヨト ・ヨト

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Conversely, given

• general curves Γ_6 and Γ_1 in Π ,

• an invertible theta-characteristic M on $\Gamma_7 = \Gamma_6 \cup \Gamma_1$ with $H^0(\Gamma_7, M) = 0$ (such an M always exists (Catanese)),

there is a resolution

$$0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \stackrel{A}{\longrightarrow} \mathscr{O}_{\Pi}(-1)^{\oplus 7} \longrightarrow M \longrightarrow 0,$$

where (Dixon, Catanese, Beauville)

- A is a 7×7 symmetric matrix of linear forms;
- det(A) is an equation for Γ_7 ;
- A defines a net of quadrics in \mathbf{P}_O^6 whose base-locus X_O is the intersection of W_O with a smooth quadric.

Its inverse image under the birational map $W \dashrightarrow W_O$ is a threefold X_{10} with a single node at O.

Definition of the isomorphism and injectivity Surjectivity Special surfaces

We now reinterpret the right-hand side in

$$\mathscr{X}_{10}^{\mathrm{nodal}} \xrightarrow{\sim} \left\{ \begin{matrix} triples \\ (\Gamma_6, \Gamma_1, M) \end{matrix} \right\} \Big/ isom.$$

・ロン ・回と ・ヨン ・ヨン

Definition of the isomorphism and injectivity Surjectivity Special surfaces

We now reinterpret the right-hand side in

$$\mathscr{X}_{10}^{\mathrm{nodal}} \xrightarrow{\sim} \left\{ \begin{matrix} triples \\ (\Gamma_6, \Gamma_1, M) \end{matrix} \right\} \Big/ isom.$$

Consider the image of the embedding

$$\begin{array}{cccc} \Pi^{\vee} & \hookrightarrow & \Gamma_6^{(6)} \\ \Gamma_1 & \longmapsto & \Gamma_1 \cdot \Gamma_6 \end{array}$$

イロン 不同と 不同と 不同と

We now reinterpret the right-hand side in

$$\mathcal{X}_{10}^{\mathrm{nodal}} \xrightarrow{\sim} \left\{ \begin{matrix} triples \\ (\Gamma_6, \Gamma_1, M) \end{matrix} \right\} \Big/ isom.$$

Consider the image of the embedding

$$\begin{array}{cccc} \Pi^{\vee} & \hookrightarrow & \Gamma_6^{(6)} \\ \Gamma_1 & \longmapsto & \Gamma_1 \cdot \Gamma_6 \end{array}$$

Its inverse image in $\widetilde{\Gamma}_{6}^{(6)}$ is the *special surface* (Beauville)

$$S = S^{\text{even}} \sqcup S^{\text{odd}},$$

イロト イポト イヨト イヨト

 Fano threefolds

 The nodal Fano threefold X10

 Reconstructing X10

 Verra threefolds

 Period maps

We now reinterpret the right-hand side in

$$\mathcal{X}_{10}^{\mathrm{nodal}} \xrightarrow{\sim} \left\{ \begin{matrix} triples \\ (\Gamma_6, \Gamma_1, M) \end{matrix} \right\} \Big/ isom.$$

Consider the image of the embedding

$$\begin{array}{cccc} \Pi^{\vee} & \hookrightarrow & \Gamma_6^{(6)} \\ \Gamma_1 & \longmapsto & \Gamma_1 \cdot \Gamma_6 \end{array}$$

Its inverse image in $\widetilde{\Gamma}_{6}^{(6)}$ is the *special surface* (Beauville)

$$S = S^{\operatorname{even}} \sqcup S^{\operatorname{odd}},$$

where S^{even} and S^{odd} are smooth, connected, with an involution $\sigma.$

イロン イヨン イヨン イヨン

We now reinterpret the right-hand side in

$$\mathcal{X}_{10}^{\mathrm{nodal}} \xrightarrow{\sim} \left\{ \begin{matrix} triples \\ (\Gamma_6, \Gamma_1, M) \end{matrix} \right\} \Big/ isom.$$

Consider the image of the embedding

$$\begin{array}{cccc} \Pi^{\vee} & \hookrightarrow & \Gamma_6^{(6)} \\ \Gamma_1 & \longmapsto & \Gamma_1 \cdot \Gamma_6 \end{array}$$

Its inverse image in $\widetilde{\Gamma}_{6}^{(6)}$ is the *special surface* (Beauville)

$$S = S^{\operatorname{even}} \sqcup S^{\operatorname{odd}},$$

where S^{even} and S^{odd} are smooth, connected, with an involution σ . When the set-up comes from X, the divisor $\Gamma_1^1 \cdot \widetilde{\Gamma}_6$ defines a point s_X of S^{odd} .

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Theorem

Given a general connected double étale cover $\pi:\widetilde{\Gamma}_6\to\Gamma_6,$ there is a commutative diagram

イロン 不同と 不同と 不同と

Э

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Theorem

Given a general connected double étale cover $\pi: \widetilde{\Gamma}_6 \to \Gamma_6$, there is a commutative diagram

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Theorem

Given a general connected double étale cover $\pi: \widetilde{\Gamma}_6 \to \Gamma_6$, there is a commutative diagram

where θ is an open embedding and maps even (resp. odd) theta-characteristics to S^{odd}/σ (resp. S^{even}/σ).

イロト イヨト イヨト イヨト

Definition of the isomorphism and injectivity Surjectivity Special surfaces

Theorem

Given a general connected double étale cover $\pi: \widetilde{\Gamma}_6 \to \Gamma_6$, there is a commutative diagram

where θ is an open embedding and maps even (resp. odd) theta-characteristics to S^{odd}/σ (resp. S^{even}/σ). Furthermore,

$$\theta(M_X)=s_X.$$

イロト イヨト イヨト イヨト

Definition of the isomorphism and injectivity Surjectivity Special surfaces

We obtain a birational isomorphism

$$\mathscr{X}_{10}^{\mathrm{nodal}} \xrightarrow{\sim} \left\{ pairs \ (\pi : \widetilde{\mathsf{\Gamma}}_{6} \to \mathsf{\Gamma}_{6}, s) \right\} \Big/ isom.$$

where $s \in S^{\text{odd}} / \sigma$.

イロン イヨン イヨン イヨン

Definition of Verra threefolds *X* is birational to a Verra threefold

Let Π and Π^* be two projective planes. A *Verra threefold* is a smooth (Fano) hypersurface

$T\subset\Pi\times\Pi^{\star}$

of bidegree (2, 2).

イロン イヨン イヨン イヨン

Definition of Verra threefolds *X* is birational to a Verra threefold

Let Π and Π^* be two projective planes. A *Verra threefold* is a smooth (Fano) hypersurface

$$T \subset \Pi \times \Pi^*$$

of bidegree (2, 2).

The projections induce two conic bundle structures $T \to \Pi$ and $T \to \Pi^*$ with discriminant curves sextics $\Gamma_6 \subset \Pi$ and $\Gamma_6^* \subset \Pi^*$, and double étale covers

$$\pi:\widetilde{\Gamma}_6\to\Gamma_6$$
 and $\pi^\star:\widetilde{\Gamma}_6^\star\to\Gamma_6^\star$.

イロト イポト イヨト イヨト

3

Let Π and Π^* be two projective planes. A *Verra threefold* is a smooth (Fano) hypersurface

$$T\subset\Pi imes\Pi^{\star}$$

of bidegree (2, 2).

The projections induce two conic bundle structures $T \to \Pi$ and $T \to \Pi^*$ with discriminant curves sextics $\Gamma_6 \subset \Pi$ and $\Gamma_6^* \subset \Pi^*$, and double étale covers

$$\pi:\widetilde{\Gamma}_6\to\Gamma_6 \quad \mathrm{and} \quad \pi^\star:\widetilde{\Gamma}_6^\star\to\Gamma_6^\star.$$

T depends on 19 parameters (same as plane sextics).

イロン イヨン イヨン イヨン

Definition of Verra threefolds *X* is birational to a Verra threefold

The "double projection"

$$p_W: X \dashrightarrow \mathbf{P}^2_W$$

from the 4-plane $\mathbf{T}_{W,O}$ is another birational conic bundle structure.

・ロン ・回と ・ヨン ・ヨン

3

Definition of Verra threefolds *X* is birational to a Verra threefold

The "double projection"

$$p_W: X \dashrightarrow \mathbf{P}^2_W$$

from the 4-plane $\mathbf{T}_{W,O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold:

Definition of Verra threefolds *X* is birational to a Verra threefold

The "double projection"

$$p_W: X \dashrightarrow \mathbf{P}^2_W$$

from the 4-plane $\mathbf{T}_{W,O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold: the conic bundle structures

•
$$p_W: X \dashrightarrow \mathbf{P}^2_W$$
,

Definition of Verra threefolds *X* is birational to a Verra threefold

The "double projection"

$$p_W: X \dashrightarrow \mathbf{P}^2_W$$

from the 4-plane $\mathbf{T}_{W,O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold: the conic bundle structures

•
$$p_W: X \dashrightarrow \mathbf{P}^2_W$$
,

•
$$p_{\ell}: X \dashrightarrow \Pi$$
 (for a suitable line $\ell \subset X_O$),

Definition of Verra threefolds *X* is birational to a Verra threefold

The "double projection"

$$p_W: X \dashrightarrow \mathbf{P}^2_W$$

from the 4-plane $\mathbf{T}_{W,O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold: the conic bundle structures

•
$$p_W: X \dashrightarrow \mathbf{P}^2_W$$
,

•
$$p_{\ell}: X \dashrightarrow \Pi$$
 (for a suitable line $\ell \subset X_O$),

induce a birational isomorphism

$$(p_W, p_\ell): X \dashrightarrow T \subset \mathbf{P}^2_W \times \Pi,$$

where T is a general Verra threefold.

 Fano threefolds
 The period map for Verra threefolds

 The nodal Fano threefold X_{10} The intermediate Jacobian J(X)

 Reconstructing X_{10} The period map for X

 Verra threefolds
 The surface of conics in X

 Period maps
 The period map for smooth X

The intermediate Jacobian

$$J(T) := H^3(T, \mathbf{C}) / \left(F^2 H^3(T, \mathbf{C}) + H^3(T, \mathbf{Z})\right)$$

is a 9-dim'l ppav

・ロト ・日本 ・ヨト ・ヨト

 Fano threefolds
 The period map for Verra threefolds

 The nodal Fano threefold X₁₀
 The intermediate Jacobian J(X)

 Reconstructing X₁₀
 The period map for X

 Verra threefolds
 The surface of conics in X

 Period maps
 The period map for smooth X

The intermediate Jacobian

$$J(T) := H^3(T, \mathbf{C}) / \left(F^2 H^3(T, \mathbf{C}) + H^3(T, \mathbf{Z}) \right)$$

is a 9-dim'l ppav and

$$J(T) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6/\Gamma_6) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6^{\star}/\Gamma_6^{\star}).$$

・ロト ・日本 ・ヨト ・ヨト

 Fano threefolds
 The period map for Verra threefolds

 The nodal Fano threefold X_{10} The intermediate Jacobian J(X)

 Reconstructing X_{10} The period map for X

 Verra threefolds
 The surface of conics in X

 Period maps
 The period map for smooth X

The intermediate Jacobian

$$J(T) := H^3(T, \mathbf{C}) / \left(F^2 H^3(T, \mathbf{C}) + H^3(T, \mathbf{Z}) \right)$$

is a 9-dim'l ppav and

$$J(T) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6/\Gamma_6) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6^{\star}/\Gamma_6^{\star}).$$

Verra proved the following:

イロン イヨン イヨン イヨン

 Fano threefolds
 The period map for Vera threefolds

 The nodal Fano threefold X_{10} The intermediate Jacobian J(X)

 Reconstructing X_{10} The period map for X

 Verra threefolds
 The surface of conics in X

 Period maps
 The period map for smooth X

The intermediate Jacobian

$$J(T) := H^3(T, \mathbf{C}) / \left(F^2 H^3(T, \mathbf{C}) + H^3(T, \mathbf{Z}) \right)$$

is a 9-dim'l ppav and

$$J(T) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6/\Gamma_6) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6^{\star}/\Gamma_6^{\star}).$$

Verra proved the following:

the period map

$$\{ \text{Verra 3-folds} \} / \text{isom.} \xrightarrow{J} \mathscr{A}_9$$

is birational onto its 19-dim'l image (generic Torelli holds),

イロト イポト イヨト イヨト
The intermediate Jacobian

$$J(T) := H^3(T, \mathbf{C}) / \left(F^2 H^3(T, \mathbf{C}) + H^3(T, \mathbf{Z})\right)$$

is a 9-dim'l ppav and

$$J(T) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6/\Gamma_6) \simeq \operatorname{Prym}(\widetilde{\Gamma}_6^{\star}/\Gamma_6^{\star}).$$

Verra proved the following:

the period map

$$\{\text{Verra 3-folds}\}/\text{isom}. \xrightarrow{J} \mathscr{A}_9$$

is birational onto its 19-dim'l image (generic Torelli holds),

2 the Prym map

$${ connected double étale } / isom. \longrightarrow \mathscr{A}_g$$

is generically 2-to-1 onto the same image.

The intermediate Jacobian J(X) (defined as above) fits into an extension

$$1
ightarrow {f C}^*
ightarrow J(X)
ightarrow J(\widetilde{X})
ightarrow 0,$$

・ロト ・回ト ・ヨト ・ヨト

The intermediate Jacobian J(X) (defined as above) fits into an extension

$$1 \to \mathbf{C}^* \to J(X) \to J(\widetilde{X}) \to 0,$$

where $\widetilde{X} \to X$ is the minimal desingularization and $J(\widetilde{X})$ is a 9-dim'l ppav.

イロン イヨン イヨン イヨン

The intermediate Jacobian J(X) (defined as above) fits into an extension

$$1 \to \mathbf{C}^* \to J(X) \to J(\widetilde{X}) \to 0,$$

where $\widetilde{X} \to X$ is the minimal desingularization and $J(\widetilde{X})$ is a 9-dim'l ppav.

Since X is birational to a Verra threefold T, we have

$$J(\widetilde{X})\simeq J(T).$$

イロン 不同と 不同と 不同と

Let $\partial \mathscr{A}_{10}$ be the moduli space of 10-dim'l group extensions as above, with its projection $p : \partial \mathscr{A}_{10} \to \mathscr{A}_{9}$.

・ロン ・回と ・ヨン・

Let $\partial \mathscr{A}_{10}$ be the moduli space of 10-dim'l group extensions as above, with its projection $p : \partial \mathscr{A}_{10} \to \mathscr{A}_{9}$.

Theorem

There is a commutative diagram

イロト イヨト イヨト イヨト

Let $\partial \mathscr{A}_{10}$ be the moduli space of 10-dim'l group extensions as above, with its projection $p : \partial \mathscr{A}_{10} \to \mathscr{A}_{9}$.

Theorem

There is a commutative diagram

$$\begin{array}{c} \mathscr{X}_{10}^{\text{nodal}} & \xrightarrow{\pi} \\ J \\ \downarrow \\ \partial \mathscr{A}_{10} & \xrightarrow{p} \\ \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \\ \mathcal{A}_{10} \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \\ \mathcal{A}_{10} \\ \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \\ \mathcal{A}_{10} \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \\ \mathcal{A}_{10} \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \\ \mathcal{A}_{10} \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \end{array} \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \end{array} \begin{array}{c} \\ \mathcal{A}_{10} \end{array} \end{array} \end{array}$$

A general fiber of the period map J is birationally the union of the surfaces S^{odd}/σ and $S^{\star,odd}/\sigma$.

Let $F_g(X)$ be the Hilbert scheme parametrizing conics in X.

・ロト ・回ト ・ヨト ・ヨト

Fano threefoldsThe period map for Verra threefoldsThe nodal Fano threefold X_{10} The intermediate Jacobian J(X)Reconstructing X_{10} The period map for XVerra threefoldsThe surface of conics in XPeriod mapsThe period map for smooth X

Let $F_g(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_g(X)$ is an irreducible projective surface with smooth normalization $\tilde{F}_g(X)$.

Let $F_g(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_g(X)$ is an irreducible projective surface with smooth normalization $\tilde{F}_g(X)$. Its singular locus corresponds to conics on X passing through O;

Let $F_g(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_g(X)$ is an irreducible projective surface with smooth normalization $\widetilde{F}_g(X)$. Its singular locus corresponds to conics on X passing through O; it is isomorphic to the smooth connected curve $\widetilde{\Gamma}_6^*$.

Let $F_g(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_g(X)$ is an irreducible projective surface with smooth normalization $\widetilde{F}_g(X)$. Its singular locus corresponds to conics on X passing through O; it is isomorphic to the smooth connected curve $\widetilde{\Gamma}_6^*$.

Furthermore, the surface $\widetilde{F}_{g}(X)$ contains a single exceptional curve and its contraction $\widetilde{F}_{m}(X)$ is isomorphic to S^{odd} .

イロン イヨン イヨン イヨン

A birational isomorphism

$$ho: F_g(X) \dashrightarrow S^{\mathrm{odd}}$$

can be defined as follows:

イロン イヨン イヨン イヨン

 Fano
 The period
 The period
 The period
 J(X)

 The nodal Fano
 threefold X₁₀
 The intermediate Jacobian J(X) The period map for X

 Verra
 threefolds
 The surface of conics in X
 The seriface of rom smooth X

A birational isomorphism

$$ho:F_g(X)\dashrightarrow S^{\mathrm{odd}}$$

can be defined as follows:

• let $c \subset X$ be a conic such that $O \notin \langle c \rangle$;

・ロト ・回 ト ・ヨト ・ヨト

A birational isomorphism

$$ho:F_g(X)\dashrightarrow S^{\mathrm{odd}}$$

can be defined as follows:

- let $c \subset X$ be a conic such that $O \notin \langle c \rangle$;
- the set of quadrics in Π that contain the 2-plane ⟨p_O(c)⟩ is a line L_c ⊂ Π;

イロン イヨン イヨン イヨン

2

A birational isomorphism

 $\rho:F_g(X)\dashrightarrow S^{\mathrm{odd}}$

can be defined as follows:

- let $c \subset X$ be a conic such that $O \notin \langle c \rangle$;
- the set of quadrics in Π that contain the 2-plane ⟨p_O(c)⟩ is a line L_c ⊂ Π;
- **③** for each point *p* of $L_c \cap \Gamma_6$, the 3-plane

 $\langle p_O(c), \mathsf{Vertex}(\Omega_p)
angle \subset \Omega_p$

(when defined) defines a point $\tilde{p} \in \widetilde{\Gamma}_6$ above p. This defines a point $\rho([c]) \in S$.

イロン イヨン イヨン イヨン

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

 $J: \mathscr{X}_{10}^{\mathrm{nodal}} \longrightarrow \partial \mathscr{A}_{10}$

as the union of two surfaces of the type $\widetilde{F}_m(X)/\sigma$ (the involution σ can be defined geometrically on $\widetilde{F}_m(X)$).

소리가 소문가 소문가 소문가

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

 $J: \mathscr{X}_{10}^{\mathrm{nodal}} \longrightarrow \partial \mathscr{A}_{10}$

as the union of two surfaces of the type $\widetilde{F}_m(X)/\sigma$ (the involution σ can be defined geometrically on $\widetilde{F}_m(X)$).

This is the degenerate case of a situation that we studied earlier:

(日本) (日本) (日本)

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

 $J: \mathscr{X}_{10}^{\mathrm{nodal}} \longrightarrow \partial \mathscr{A}_{10}$

as the union of two surfaces of the type $\tilde{F}_m(X)/\sigma$ (the involution σ can be defined geometrically on $\tilde{F}_m(X)$).

This is the degenerate case of a situation that we studied earlier:

• if \mathscr{X}_{10} is the 22-dim'l moduli stack for *smooth* Fano threefolds X_{10} ,

・同下 ・ヨト ・ヨト

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

 $J: \mathscr{X}_{10}^{\mathrm{nodal}} \longrightarrow \partial \mathscr{A}_{10}$

as the union of two surfaces of the type $\tilde{F}_m(X)/\sigma$ (the involution σ can be defined geometrically on $\tilde{F}_m(X)$).

This is the degenerate case of a situation that we studied earlier:

- if X₁₀ is the 22-dim'l moduli stack for smooth Fano threefolds X₁₀,
- the general fiber of the period map

$$J:\mathscr{X}_{10}\longrightarrow\mathscr{A}_{10}$$

(日本) (日本) (日本)

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

 $J: \mathscr{X}_{10}^{\mathrm{nodal}} \longrightarrow \partial \mathscr{A}_{10}$

as the union of two surfaces of the type $\tilde{F}_m(X)/\sigma$ (the involution σ can be defined geometrically on $\tilde{F}_m(X)$).

This is the degenerate case of a situation that we studied earlier:

- if X₁₀ is the 22-dim'l moduli stack for smooth Fano threefolds X₁₀,
- the general fiber of the period map

$$J:\mathscr{X}_{10}\longrightarrow\mathscr{A}_{10}$$

is the union of finitely many disjoint (pairs of) smooth irreducible *projective* surfaces of the type $F_m(X)/\sigma$.

伺 とう ヨン うちょう

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

高 とう モン・ く ヨ と

3

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

To any line contained in X, one can also associate another threefold of the same type in a different component of the fiber.

白 と く ヨ と く ヨ と

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

To any line contained in X, one can also associate another threefold of the same type in a different component of the fiber. These correspond the two components that we described at the boundary.

向下 イヨト イヨト

Fano threefolds	The period map for Verra threefolds
The nodal Fano threefold X_{10}	The intermediate Jacobian $J(X)$
Reconstructing X_{10}	The period map for X
Verra threefolds	The surface of conics in X
Period maps	The period map for smooth X

To any line contained in X, one can also associate another threefold of the same type in a different component of the fiber. These correspond the two components that we described at the boundary.

We conjecture that these are the only two components of a general fiber of the period map

$$J: \mathscr{X}_{10} \longrightarrow \mathscr{A}_{10}.$$

向下 イヨト イヨト