On nodal prime Fano threefolds of degree 10

Olivier DEBARRE (joint with Atanas ILIEV and Laurent MANIVEL)

École Normale Supérieure de Paris

Trento, September 2010

A Fano variety is a complex projective variety X with $-K_{X}$ ample.

A Fano variety is a complex projective variety X with $-K_{X}$ ample.
Smooth Fano threefolds form 105 irreducible families:

A Fano variety is a complex projective variety X with $-K_{X}$ ample.
Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers >1;

A Fano variety is a complex projective variety X with $-K_{X}$ ample.
Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers >1;
- 17 with Picard number 1 :

A Fano variety is a complex projective variety X with $-K_{X}$ ample.
Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers >1;
- 17 with Picard number 1 :
- 7 with indices >1;

A Fano variety is a complex projective variety X with $-K_{X}$ ample.
Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers >1;
- 17 with Picard number 1 :
- 7 with indices >1;
- 10 with index 1 :

A Fano variety is a complex projective variety X with $-K_{X}$ ample.
Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers >1;
- 17 with Picard number 1 :
- 7 with indices >1;
- 10 with index 1: one for each degree in $\{2,4,6,8, \ldots, 18,22\}$.

A Fano variety is a complex projective variety X with $-K_{X}$ ample.
Smooth Fano threefolds form 105 irreducible families:

- 88 with Picard numbers >1;
- 17 with Picard number 1 :
- 7 with indices >1;
- 10 with index 1: one for each degree in $\{2,4,6,8, \ldots, 18,22\}$.
X_{10} : Fano threefold with Picard number 1, index 1, and degree 10.

The double étale cover $\pi: \Gamma_{6} \rightarrow \Gamma_{6}$
A (birational) conic bundle structure on X

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

- the Grassmannian $G\left(2, V_{5}\right)$,

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

- the Grassmannian $G\left(2, V_{5}\right)$,
- a general \mathbf{P}^{7},

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

- the Grassmannian $G\left(2, V_{5}\right)$,
- a general \mathbf{P}^{7},
- a general quadric Ω,

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

- the Grassmannian $G\left(2, V_{5}\right)$,
- a general \mathbf{P}^{7},
- a general quadric Ω,
and

$$
X_{10}=G\left(2, V_{5}\right) \cap \mathbf{P}^{7} \cap \Omega \subset \mathbf{P}^{7}
$$

is anticanonically embedded.

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

- the Grassmannian $G\left(2, V_{5}\right)$,
- a general \mathbf{P}^{7},
- a general quadric Ω,
and

$$
X_{10}=G\left(2, V_{5}\right) \cap \mathbf{P}^{7} \cap \Omega \subset \mathbf{P}^{7}
$$

is anticanonically embedded.
Note:

- $W=G\left(2, V_{5}\right) \cap \mathbf{P}^{7}$ is a smooth fourfold, independent of \mathbf{P}^{7};

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

- the Grassmannian $G\left(2, V_{5}\right)$,
- a general \mathbf{P}^{7},
- a general quadric Ω,
and

$$
X_{10}=G\left(2, V_{5}\right) \cap \mathbf{P}^{7} \cap \Omega \subset \mathbf{P}^{7}
$$

is anticanonically embedded.
Note:

- $W=G\left(2, V_{5}\right) \cap \mathbf{P}^{7}$ is a smooth fourfold, independent of \mathbf{P}^{7};
- for Ω general quadric cone with vertex $O \in W$ general, $X=W \cap \Omega$ has a single node at O.

A general X_{10} is the intersection in $\mathbf{P}\left(\wedge^{2} V_{5}\right)=\mathbf{P}^{9}$ of

- the Grassmannian $G\left(2, V_{5}\right)$,
- a general \mathbf{P}^{7},
- a general quadric Ω,
and

$$
X_{10}=G\left(2, V_{5}\right) \cap \mathbf{P}^{7} \cap \Omega \subset \mathbf{P}^{7}
$$

is anticanonically embedded.
Note:

- $W=G\left(2, V_{5}\right) \cap \mathbf{P}^{7}$ is a smooth fourfold, independent of \mathbf{P}^{7};
- for Ω general quadric cone with vertex $O \in W$ general, $X=W \cap \Omega$ has a single node at O.
From now on, $X \subset \mathbf{P}^{7}$ will be such a nodal Fano threefold.

The fourfold W_{O} and the threefold X_{O} in P_{O}^{6} The double étale cover $\pi: \Gamma_{6} \rightarrow \Gamma_{6}$
A (birational) conic bundle structure on X

If $p_{O}: \mathbf{P}^{7} \rightarrow \mathbf{P}_{O}^{6}$ is the projection from O,

If $p_{O}: \mathbf{P}^{7} \rightarrow \mathbf{P}_{O}^{6}$ is the projection from O,

- $W_{O}:=p_{O}(W) \subset \mathbf{P}_{O}^{6}$ is the base-locus of a pencil $\left(\Omega_{p}\right)_{p \in \Gamma_{1}}$ of quadrics of rank 6

If $p_{O}: \mathbf{P}^{7} \rightarrow \mathbf{P}_{O}^{6}$ is the projection from O,

- $W_{O}:=p_{O}(W) \subset \mathbf{P}_{O}^{6}$ is the base-locus of a pencil $\left(\Omega_{p}\right)_{p \in \Gamma_{1}}$ of quadrics of rank 6 (all such pencils are isomorphic);

If $p_{O}: \mathbf{P}^{7} \rightarrow \mathbf{P}_{O}^{6}$ is the projection from O,

- $W_{O}:=p_{O}(W) \subset \mathbf{P}_{O}^{6}$ is the base-locus of a pencil $\left(\Omega_{p}\right)_{p \in \Gamma_{1}}$ of quadrics of rank 6 (all such pencils are isomorphic);
- W_{O} contains $\mathbf{P}_{W}^{3}:=p_{O}\left(\mathbf{T}_{W, O}\right)$;

If $p_{O}: \mathbf{P}^{7} \rightarrow \mathbf{P}_{O}^{6}$ is the projection from O,

- $W_{O}:=p_{O}(W) \subset \mathbf{P}_{O}^{6}$ is the base-locus of a pencil $\left(\Omega_{p}\right)_{p \in \Gamma_{1}}$ of quadrics of rank 6 (all such pencils are isomorphic);
- W_{O} contains $\mathbf{P}_{W}^{3}:=p_{O}\left(\mathbf{T}_{W, O}\right)$;
- Sing $\left(W_{O}\right)$ is the locus of the vertices of the Ω_{p}, a smooth rational cubic curve in \mathbf{P}_{W}^{3};

If $p_{O}: \mathbf{P}^{7} \rightarrow \mathbf{P}_{O}^{6}$ is the projection from O,

- $W_{O}:=p_{O}(W) \subset \mathbf{P}_{O}^{6}$ is the base-locus of a pencil $\left(\Omega_{p}\right)_{p \in \Gamma_{1}}$ of quadrics of rank 6 (all such pencils are isomorphic);
- W_{O} contains $\mathbf{P}_{W}^{3}:=p_{O}\left(\mathbf{T}_{W, O}\right)$;
- Sing $\left(W_{O}\right)$ is the locus of the vertices of the Ω_{p}, a smooth rational cubic curve in \mathbf{P}_{W}^{3};
and
- $X_{O}:=p_{O}(X) \subset \mathbf{P}_{O}^{6}$ is the intersection of W_{O} with the general quadric $\Omega_{O}:=p_{O}(\Omega)$;

If $p_{O}: \mathbf{P}^{7} \rightarrow \mathbf{P}_{O}^{6}$ is the projection from O,

- $W_{O}:=p_{O}(W) \subset \mathbf{P}_{O}^{6}$ is the base-locus of a pencil $\left(\Omega_{p}\right)_{p \in \Gamma_{1}}$ of quadrics of rank 6 (all such pencils are isomorphic);
- W_{O} contains $\mathbf{P}_{W}^{3}:=p_{O}\left(\mathbf{T}_{W, O}\right)$;
- Sing $\left(W_{O}\right)$ is the locus of the vertices of the Ω_{p}, a smooth rational cubic curve in \mathbf{P}_{W}^{3};
and
- $X_{O}:=p_{O}(X) \subset \mathbf{P}_{O}^{6}$ is the intersection of W_{O} with the general quadric $\Omega_{O}:=p_{O}(\Omega)$;
- $\operatorname{Sing}\left(X_{O}\right)=\operatorname{Sing}\left(W_{O}\right) \cap \Omega_{O}$ consists of six points (corresponding to the six lines in X through O).

The threefold X_{O} is therefore the base-locus of the net of quadrics $\Pi:=\left\langle\Omega_{O}, \Gamma_{1}\right\rangle$ in \mathbf{P}_{O}^{6}. Consider

The threefold X_{O} is therefore the base-locus of the net of quadrics $\Pi:=\left\langle\Omega_{O}, \Gamma_{1}\right\rangle$ in \mathbf{P}_{O}^{6}. Consider

- the discriminant curve $\Gamma_{7} \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of

The threefold X_{O} is therefore the base-locus of the net of quadrics $\Pi:=\left\langle\Omega_{O}, \Gamma_{1}\right\rangle$ in \mathbf{P}_{O}^{6}. Consider

- the discriminant curve $\Gamma_{7} \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
- the line Γ_{1} of quadrics containing W_{O} and

The threefold X_{O} is therefore the base-locus of the net of quadrics $\Pi:=\left\langle\Omega_{O}, \Gamma_{1}\right\rangle$ in \mathbf{P}_{O}^{6}. Consider

- the discriminant curve $\Gamma_{7} \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
- the line Γ_{1} of quadrics containing W_{O} and
- a smooth sextic Γ_{6} meeting Γ_{1} transversely

The threefold X_{O} is therefore the base-locus of the net of quadrics $\Pi:=\left\langle\Omega_{O}, \Gamma_{1}\right\rangle$ in \mathbf{P}_{O}^{6}. Consider

- the discriminant curve $\Gamma_{7} \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
- the line Γ_{1} of quadrics containing W_{O} and
- a smooth sextic Γ_{6} meeting Γ_{1} transversely at the six points corresponding to the quadrics in Γ_{1} with vertices at the six singular points of X_{O};

The threefold X_{O} is therefore the base-locus of the net of quadrics $\Pi:=\left\langle\Omega_{O}, \Gamma_{1}\right\rangle$ in \mathbf{P}_{O}^{6}. Consider

- the discriminant curve $\Gamma_{7} \subset \Pi$ corresponding to singular quadrics (all of rank 6), union of
- the line Γ_{1} of quadrics containing W_{O} and
- a smooth sextic Γ_{6} meeting Γ_{1} transversely at the six points corresponding to the quadrics in Γ_{1} with vertices at the six singular points of X_{O};
- the double étale cover

$$
\pi: \widetilde{\Gamma}_{6} \cup \Gamma_{1}^{1} \cup \Gamma_{1}^{2} \rightarrow \Gamma_{6} \cup \Gamma_{1}
$$

corresponding to the choice of a family of 3-planes contained in a quadric of rank 6 in $\Pi\left(\mathbf{P}_{W}^{3}\right.$ defines the component $\left.\Gamma_{1}^{1}\right)$.

As the base-locus of the net of quadrics Π, the threefold X_{O} has a birational conic bundle structure $p_{\ell}: X \rightarrow \Pi$:

As the base-locus of the net of quadrics Π, the threefold X_{O} has a birational conic bundle structure $p_{\ell}: X \rightarrow \Pi$:

- choose a general line $\ell \subset X_{O}$;

As the base-locus of the net of quadrics Π, the threefold X_{O} has a birational conic bundle structure $p_{\ell}: X \rightarrow \Pi$:

- choose a general line $\ell \subset X_{O}$;
- to $x \in X_{O}$ general, associate the unique quadric in Π containing the 2-plane $\langle x, \ell\rangle$.

As the base-locus of the net of quadrics Π, the threefold X_{O} has a birational conic bundle structure $p_{\ell}: X \rightarrow \Pi$:

- choose a general line $\ell \subset X_{O}$;
- to $x \in X_{O}$ general, associate the unique quadric in Π containing the 2-plane $\langle x, \ell\rangle$.
The discriminant curve is $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$.

Let $\mathscr{X}_{10}^{\text {nodal }}$ be the 21-dim'l moduli stack for our nodal X.

Let $\mathscr{X}_{10}^{\text {nodal }}$ be the 21-dim'l moduli stack for our nodal X.

Theorem

There is a birational isomorphism

$$
\mathscr{X}_{10}^{\text {nodal }} \xrightarrow{\sim}\left\{\begin{array}{c}
\text { triples } \\
\left(\Gamma_{6}, \Gamma_{1}, M\right)
\end{array}\right\} / \text { isom } .
$$

where M is an even invertible theta-characteristic on $\Gamma_{6} \cup \Gamma_{1}$.

Sketch of proof. Given X, the curve $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ parametrizes singular quadrics in the net Π of quadrics containing X_{O}.

Sketch of proof. Given X, the curve $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ parametrizes singular quadrics in the net Π of quadrics containing X_{O}. Let

Sketch of proof. Given X, the curve $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ parametrizes singular quadrics in the net Π of quadrics containing X_{O}. Let

and define

$$
M_{X}=v^{*} \mathscr{O}_{\mathbf{P}_{o}^{6}}(1) \otimes \mathscr{O}_{\Gamma_{7}}(-1) .
$$

Sketch of proof. Given X, the curve $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ parametrizes singular quadrics in the net Π of quadrics containing X_{O}. Let

$$
\begin{array}{rccc}
v: & \Gamma_{7} & \hookrightarrow & \mathbf{P}_{O}^{6} \\
& p & \longmapsto & \operatorname{Vertex}\left(\Omega_{p}\right)
\end{array}
$$

and define

$$
M_{X}=v^{*} \mathscr{O}_{\mathbf{P}_{o}^{6}}(1) \otimes \mathscr{O}_{\Gamma_{7}}(-1) .
$$

Then (Beauville),

- M_{X} is a theta-characteristic and $H^{0}\left(\Gamma_{7}, M_{X}\right)=0$;

Sketch of proof. Given X, the curve $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ parametrizes singular quadrics in the net Π of quadrics containing X_{O}. Let

$$
\begin{array}{rllc}
v: \quad \Gamma_{7} & \hookrightarrow & \mathrm{P}_{O}^{6} \\
p & \longmapsto & \operatorname{Vertex}\left(\Omega_{p}\right)
\end{array}
$$

and define

$$
M_{X}=v^{*} \mathscr{O}_{\mathbf{P}_{o}^{6}}(1) \otimes \mathscr{O}_{\Gamma_{7}}(-1) .
$$

Then (Beauville),

- M_{X} is a theta-characteristic and $H^{0}\left(\Gamma_{7}, M_{X}\right)=0$;
- the double étale cover $\pi: \widetilde{\Gamma}_{7} \rightarrow \Gamma_{7}$ is defined by the line bundle $\eta=M_{X}(-2)$, of order 2 ;

Sketch of proof. Given X, the curve $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ parametrizes singular quadrics in the net Π of quadrics containing X_{O}. Let

$$
\begin{array}{rccc}
v: \quad \Gamma_{7} & \hookrightarrow & \mathbf{P}_{O}^{6} \\
p & \longmapsto & \operatorname{Vertex}\left(\Omega_{p}\right)
\end{array}
$$

and define

$$
M_{X}=v^{*} \mathscr{O}_{\mathbf{P}_{o}^{6}}(1) \otimes \mathscr{O}_{\Gamma_{7}}(-1) .
$$

Then (Beauville),

- M_{X} is a theta-characteristic and $H^{0}\left(\Gamma_{7}, M_{X}\right)=0$;
- the double étale cover $\pi: \widetilde{\Gamma}_{7} \rightarrow \Gamma_{7}$ is defined by the line bundle $\eta=M_{X}(-2)$, of order 2 ;
- $X_{O} \subset \mathbf{P}_{O}^{6}$ is determined up to projective isomorphism by the pair $\left(\Gamma_{7}, M_{X}\right)$.

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,
- an invertible theta-characteristic M on $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ with $H^{0}\left(\Gamma_{7}, M\right)=0$

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,
- an invertible theta-characteristic M on $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ with $H^{0}\left(\Gamma_{7}, M\right)=0$ (such an M always exists (Catanese)),

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,
- an invertible theta-characteristic M on $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ with $H^{0}\left(\Gamma_{7}, M\right)=0$ (such an M always exists (Catanese)),
there is a resolution

$$
0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \xrightarrow{A} \mathscr{O}_{\Pi}(-1)^{\oplus 7} \longrightarrow M \longrightarrow 0
$$

where (Dixon, Catanese, Beauville)

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,
- an invertible theta-characteristic M on $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ with $H^{0}\left(\Gamma_{7}, M\right)=0$ (such an M always exists (Catanese)),
there is a resolution

$$
0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \xrightarrow{A} \mathscr{O}(-1)^{\oplus \top} \longrightarrow M \longrightarrow 0
$$

where (Dixon, Catanese, Beauville)

- A is a 7×7 symmetric matrix of linear forms;

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,
- an invertible theta-characteristic M on $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ with $H^{0}\left(\Gamma_{7}, M\right)=0$ (such an M always exists (Catanese)),
there is a resolution

$$
0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \xrightarrow{A} \mathscr{O}(-1)^{\oplus \top} \longrightarrow M \longrightarrow 0
$$

where (Dixon, Catanese, Beauville)

- A is a 7×7 symmetric matrix of linear forms;
- $\operatorname{det}(A)$ is an equation for Γ_{7};

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,
- an invertible theta-characteristic M on $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ with $H^{0}\left(\Gamma_{7}, M\right)=0$ (such an M always exists (Catanese)),
there is a resolution

$$
0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \xrightarrow{A} \mathscr{O}(-1)^{\oplus \top} \longrightarrow M \longrightarrow 0
$$

where (Dixon, Catanese, Beauville)

- A is a 7×7 symmetric matrix of linear forms;
- $\operatorname{det}(A)$ is an equation for Γ_{7};
- A defines a net of quadrics in \mathbf{P}_{O}^{6} whose base-locus X_{O} is the intersection of W_{O} with a smooth quadric.

Conversely, given

- general curves Γ_{6} and Γ_{1} in Π,
- an invertible theta-characteristic M on $\Gamma_{7}=\Gamma_{6} \cup \Gamma_{1}$ with $H^{0}\left(\Gamma_{7}, M\right)=0$ (such an M always exists (Catanese)),
there is a resolution

$$
0 \longrightarrow \mathscr{O}_{\Pi}(-2)^{\oplus 7} \xrightarrow{A} \mathscr{O}_{\Pi}(-1)^{\oplus 7} \longrightarrow M \longrightarrow 0
$$

where (Dixon, Catanese, Beauville)

- A is a 7×7 symmetric matrix of linear forms;
- $\operatorname{det}(A)$ is an equation for Γ_{7};
- A defines a net of quadrics in \mathbf{P}_{O}^{6} whose base-locus X_{O} is the intersection of W_{O} with a smooth quadric.
Its inverse image under the birational map $W \rightarrow W_{O}$ is a threefold X_{10} with a single node at O.

We now reinterpret the right-hand side in

$$
\mathscr{X}_{10}^{\text {nodal }} \xrightarrow{\sim}\left\{\begin{array}{c}
\text { triples } \\
\left(\Gamma_{6}, \Gamma_{1}, M\right)
\end{array}\right\} / \text { isom } .
$$

We now reinterpret the right-hand side in

$$
\mathscr{X}_{10}^{\text {nodal }} \xrightarrow{\sim}\left\{\begin{array}{c}
\text { triples } \\
\left(\Gamma_{6}, \Gamma_{1}, M\right)
\end{array}\right\} / \text { isom } .
$$

Consider the image of the embedding

We now reinterpret the right-hand side in

$$
\mathscr{X}_{10}^{\text {nodal }} \xrightarrow{\sim}\left\{\begin{array}{c}
\text { triples } \\
\left(\Gamma_{6}, \Gamma_{1}, M\right)
\end{array}\right\} / \text { isom } .
$$

Consider the image of the embedding

Its inverse image in $\widetilde{\Gamma}_{6}^{(6)}$ is the special surface (Beauville)

$$
S=S^{\text {even }} \sqcup S^{\text {odd }}
$$

We now reinterpret the right-hand side in

$$
\mathscr{X}_{10}^{\text {nodal }} \xrightarrow{\sim}\left\{\begin{array}{c}
\text { triples } \\
\left(\Gamma_{6}, \Gamma_{1}, M\right)
\end{array}\right\} / \text { isom } .
$$

Consider the image of the embedding

Its inverse image in $\widetilde{\Gamma}_{6}^{(6)}$ is the special surface (Beauville)

$$
S=S^{\text {even }} \sqcup S^{\text {odd }}
$$

where $S^{\text {even }}$ and $S^{\text {odd }}$ are smooth, connected, with an involution σ.

We now reinterpret the right-hand side in

$$
\mathscr{X}_{10}^{\text {nodal }} \xrightarrow{\sim}\left\{\begin{array}{c}
\text { triples } \\
\left(\Gamma_{6}, \Gamma_{1}, M\right)
\end{array}\right\} / \text { isom } .
$$

Consider the image of the embedding

Its inverse image in $\widetilde{\Gamma}_{6}^{(6)}$ is the special surface (Beauville)

$$
S=S^{\text {even }} \sqcup S^{\text {odd }}
$$

where $S^{\text {even }}$ and $S^{\text {odd }}$ are smooth, connected, with an involution σ. When the set-up comes from X, the divisor $\Gamma_{1}^{1} \cdot \Gamma_{6}$ defines a point s_{X} of $S^{\text {odd }}$.

Theorem

Given a general connected double étale cover $\pi: \widetilde{\Gamma}_{6} \rightarrow \Gamma_{6}$, there is a commutative diagram

Theorem

Given a general connected double étale cover $\pi: \widetilde{\Gamma}_{6} \rightarrow \Gamma_{6}$, there is a commutative diagram
$\left\{\begin{array}{c}\text { Invertible theta-characteristics } \\ M \text { on } \Gamma_{6} \cup \Gamma_{1} \text { with }\left.M\right|_{\Gamma_{6}} \simeq \eta(2)\end{array}\right\} \xrightarrow{\theta} S / \sigma$

Theorem

Given a general connected double étale cover $\pi: \widetilde{\Gamma}_{6} \rightarrow \Gamma_{6}$, there is a commutative diagram

$$
\left\{\begin{array}{c}
\text { Invertible theta-characteristics } \\
M \text { on } \Gamma_{6} \cup \Gamma_{1} \text { with }\left.M\right|_{\Gamma_{6}} \simeq \eta(2)
\end{array}\right\} \xrightarrow{\theta} \text { }
$$

where θ is an open embedding and maps even (resp. odd) theta-characteristics to $S^{\text {odd }} / \sigma\left(\right.$ resp. $\left.S^{\text {even }} / \sigma\right)$.

Theorem

Given a general connected double étale cover π : $\widetilde{\Gamma}_{6} \rightarrow \Gamma_{6}$, there is a commutative diagram

$$
\left\{\begin{array}{c}
\text { Invertible theta-characteristics } \\
M \text { on } \Gamma_{6} \cup \Gamma_{1} \text { with }\left.M\right|_{\Gamma_{6}} \simeq \eta(2)
\end{array}\right\} \xrightarrow{\theta} \text { }
$$

where θ is an open embedding and maps even (resp. odd) theta-characteristics to $S^{\text {odd }} / \sigma$ (resp. $S^{\text {even }} / \sigma$).
Furthermore,

$$
\theta\left(M_{X}\right)=s_{X}
$$

We obtain a birational isomorphism

$$
\mathscr{X}_{10}^{\text {nodal }} \xrightarrow{\sim}\left\{\text { pairs }\left(\pi: \widetilde{\Gamma}_{6} \rightarrow \Gamma_{6}, s\right)\right\} / \text { isom. }
$$

where $s \in S^{\text {odd }} / \sigma$.

Let Π and Π^{\star} be two projective planes. A Verra threefold is a smooth (Fano) hypersurface

$$
T \subset \Pi \times \Pi^{\star}
$$

of bidegree $(2,2)$.

Let Π and Π^{\star} be two projective planes. A Verra threefold is a smooth (Fano) hypersurface

$$
T \subset \Pi \times \Pi^{\star}
$$

of bidegree $(2,2)$.
The projections induce two conic bundle structures $T \rightarrow \Pi$ and $T \rightarrow \Pi^{\star}$ with discriminant curves sextics $\Gamma_{6} \subset \Pi$ and $\Gamma_{6}^{\star} \subset \Pi^{\star}$, and double étale covers

$$
\pi: \tilde{\Gamma}_{6} \rightarrow \Gamma_{6} \quad \text { and } \quad \pi^{\star}: \tilde{\Gamma}_{6}^{\star} \rightarrow \Gamma_{6}^{\star} .
$$

Let Π and Π^{\star} be two projective planes. A Verra threefold is a smooth (Fano) hypersurface

$$
T \subset \Pi \times \Pi^{\star}
$$

of bidegree $(2,2)$.
The projections induce two conic bundle structures $T \rightarrow \Pi$ and $T \rightarrow \Pi^{\star}$ with discriminant curves sextics $\Gamma_{6} \subset \Pi$ and $\Gamma_{6}^{\star} \subset \Pi^{\star}$, and double étale covers

$$
\pi: \tilde{\Gamma}_{6} \rightarrow \Gamma_{6} \quad \text { and } \quad \pi^{\star}: \tilde{\Gamma}_{6}^{\star} \rightarrow \Gamma_{6}^{\star} .
$$

T depends on 19 parameters (same as plane sextics).

The "double projection"

$$
p_{W}: X \rightarrow \mathbf{P}_{W}^{2}
$$

from the 4-plane $\mathbf{T}_{W, O}$ is another birational conic bundle structure.

The "double projection"

$$
p_{W}: X \rightarrow \mathbf{P}_{W}^{2}
$$

from the 4-plane $\mathbf{T}_{W, O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold:

The "double projection"

$$
p_{W}: X \rightarrow \mathbf{P}_{W}^{2}
$$

from the 4-plane $\mathbf{T}_{W, O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold: the conic bundle structures

- $p_{W}: X \longrightarrow \mathbf{P}_{W}^{2}$,

The "double projection"

$$
p_{W}: X \rightarrow \mathbf{P}_{W}^{2}
$$

from the 4-plane $\mathbf{T}_{W, O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold: the conic bundle structures

- $p_{W}: X \rightarrow \mathbf{P}_{W}^{2}$,
- $p_{\ell}: X \rightarrow \Pi$ (for a suitable line $\ell \subset X_{O}$),

The "double projection"

$$
p_{W}: X \rightarrow \mathbf{P}_{W}^{2}
$$

from the 4-plane $\mathbf{T}_{W, O}$ is another birational conic bundle structure.

Theorem

A general nodal Fano threefold X is birational to a general Verra threefold: the conic bundle structures

- $p_{W}: X \rightarrow \mathbf{P}_{W}^{2}$,
- $p_{\ell}: X \rightarrow \Pi$ (for a suitable line $\ell \subset X_{O}$), induce a birational isomorphism

$$
\left(p_{W}, p_{\ell}\right): X \rightarrow T \subset \mathbf{P}_{W}^{2} \times \Pi
$$

where T is a general Verra threefold.

The period map for Verra threefolds The intermediate Jacobian $J(X)$
The period map for X
The surface of conics in X
The period map for smooth X

The intermediate Jacobian

$$
J(T):=H^{3}(T, \mathbf{C}) /\left(F^{2} H^{3}(T, \mathbf{C})+H^{3}(T, \mathbf{Z})\right)
$$

is a 9 -dim'l ppav

The intermediate Jacobian

$$
J(T):=H^{3}(T, \mathbf{C}) /\left(F^{2} H^{3}(T, \mathbf{C})+H^{3}(T, \mathbf{Z})\right)
$$

is a 9-dim'l ppav and

$$
J(T) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6} / \Gamma_{6}\right) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6}^{\star} / \Gamma_{6}^{\star}\right) .
$$

The intermediate Jacobian

$$
J(T):=H^{3}(T, \mathbf{C}) /\left(F^{2} H^{3}(T, \mathbf{C})+H^{3}(T, \mathbf{Z})\right)
$$

is a 9-dim'l ppav and

$$
J(T) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6} / \Gamma_{6}\right) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6}^{\star} / \Gamma_{6}^{\star}\right) .
$$

Verra proved the following:

The intermediate Jacobian

$$
J(T):=H^{3}(T, \mathbf{C}) /\left(F^{2} H^{3}(T, \mathbf{C})+H^{3}(T, \mathbf{Z})\right)
$$

is a 9-dim'l ppav and

$$
J(T) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6} / \Gamma_{6}\right) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6}^{\star} / \Gamma_{6}^{\star}\right) .
$$

Verra proved the following:
(1) the period map

$$
\{\text { Verra 3-folds }\} / \text { isom. } \xrightarrow{J} \mathscr{A}_{9}
$$

is birational onto its 19-dim'l image (generic Torelli holds),

The intermediate Jacobian

$$
J(T):=H^{3}(T, \mathbf{C}) /\left(F^{2} H^{3}(T, \mathbf{C})+H^{3}(T, \mathbf{Z})\right)
$$

is a 9-dim'l ppav and

$$
J(T) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6} / \Gamma_{6}\right) \simeq \operatorname{Prym}\left(\widetilde{\Gamma}_{6}^{\star} / \Gamma_{6}^{\star}\right) .
$$

Verra proved the following:
(1) the period map

$$
\{\text { Verra 3-folds }\} / \text { isom. } \xrightarrow{J} \mathscr{A}_{9}
$$

is birational onto its 19-dim'l image (generic Torelli holds),
(2) the Prym map

$$
\left\{\begin{array}{l}
\text { connected double étale } \\
\text { covers of plane sextics }
\end{array}\right\} / \text { isom. } \xrightarrow{\text { Prym }} \mathscr{A}_{9}
$$

is generically 2 -to-1 onto the same image.

The intermediate Jacobian $J(X)$ (defined as above) fits into an extension

$$
1 \rightarrow \mathbf{C}^{*} \rightarrow J(X) \rightarrow J(\widetilde{X}) \rightarrow 0
$$

The intermediate Jacobian $J(X)$ (defined as above) fits into an extension

$$
1 \rightarrow \mathbf{C}^{*} \rightarrow J(X) \rightarrow J(\widetilde{X}) \rightarrow 0
$$

where $\widetilde{X} \rightarrow X$ is the minimal desingularization and $J(\widetilde{X})$ is a 9-dim'l ppav.

The intermediate Jacobian $J(X)$ (defined as above) fits into an extension

$$
1 \rightarrow \mathbf{C}^{*} \rightarrow J(X) \rightarrow J(\widetilde{X}) \rightarrow 0
$$

where $\widetilde{X} \rightarrow X$ is the minimal desingularization and $J(\widetilde{X})$ is a 9-dim'l ppav.
Since X is birational to a Verra threefold T, we have

$$
J(\widetilde{X}) \simeq J(T) .
$$

Let $\partial \mathscr{A}_{10}$ be the moduli space of 10 -dim'l group extensions as above, with its projection $p: \partial \mathscr{A}_{10} \rightarrow \mathscr{A}_{9}$.

Let $\partial \mathscr{A}_{10}$ be the moduli space of 10 -dim'l group extensions as above, with its projection $p: \partial \mathscr{A}_{10} \rightarrow \mathscr{A}_{9}$.

Theorem

There is a commutative diagram

Let $\partial \mathscr{A}_{10}$ be the moduli space of 10 -dim'l group extensions as above, with its projection $p: \partial \mathscr{A}_{10} \rightarrow \mathscr{A}_{9}$.

Theorem

There is a commutative diagram

A general fiber of the period map J is birationally the union of the surfaces $S^{\text {odd }} / \sigma$ and $S^{\star, \text { odd }} / \sigma$.

The period map for Verra threefolds The intermediate Jacobian $J(X)$
The period map for X
The surface of conics in X
The period map for smooth X

Let $F_{g}(X)$ be the Hilbert scheme parametrizing conics in X.

Let $F_{g}(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_{g}(X)$ is an irreducible projective surface with smooth normalization $\widetilde{F}_{g}(X)$.

Let $F_{g}(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_{g}(X)$ is an irreducible projective surface with smooth normalization $\widetilde{F}_{g}(X)$. Its singular locus corresponds to conics on X passing through O;

Let $F_{g}(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_{g}(X)$ is an irreducible projective surface with smooth normalization $\widetilde{F}_{g}(X)$. Its singular locus corresponds to conics on X passing through O; it is isomorphic to the smooth connected curve Γ_{6}^{\star}.

Let $F_{g}(X)$ be the Hilbert scheme parametrizing conics in X.

Theorem (Logachev)

The variety $F_{g}(X)$ is an irreducible projective surface with smooth normalization $\widetilde{F}_{g}(X)$. Its singular locus corresponds to conics on X passing through O; it is isomorphic to the smooth connected curve Γ_{6}^{\star}.
Furthermore, the surface $\widetilde{F}_{g}(X)$ contains a single exceptional curve and its contraction $\widetilde{F}_{m}(X)$ is isomorphic to $S^{\text {odd }}$.

A birational isomorphism

$$
\rho: F_{g}(X) \rightarrow S^{\text {odd }}
$$

can be defined as follows:

A birational isomorphism

$$
\rho: F_{g}(X) \rightarrow S^{\text {odd }}
$$

can be defined as follows:
(1) let $c \subset X$ be a conic such that $O \notin\langle c\rangle$;

A birational isomorphism

$$
\rho: F_{g}(X) \rightarrow S^{\text {odd }}
$$

can be defined as follows:
(1) let $c \subset X$ be a conic such that $O \notin\langle c\rangle$;
(2) the set of quadrics in Π that contain the 2-plane $\left\langle p_{O}(c)\right\rangle$ is a line $L_{c} \subset \Pi$;

A birational isomorphism

$$
\rho: F_{g}(X) \rightarrow S^{\text {odd }}
$$

can be defined as follows:
(1) let $c \subset X$ be a conic such that $O \notin\langle c\rangle$;
(2) the set of quadrics in Π that contain the 2-plane $\left\langle p_{O}(c)\right\rangle$ is a line $L_{c} \subset \Pi$;
(3) for each point p of $L_{c} \cap \Gamma_{6}$, the 3-plane

$$
\left\langle p_{O}(c), \operatorname{Vertex}\left(\Omega_{p}\right)\right\rangle \subset \Omega_{p}
$$

(when defined) defines a point $\tilde{p} \in \widetilde{\Gamma}_{6}$ above p.
This defines a point $\rho([c]) \in S$.

So we have another interpretation of the fiber of the period map

$$
J: \mathscr{X}_{10}^{\text {nodal }} \longrightarrow \partial \mathscr{A}_{10}
$$

as the union of two surfaces of the type $\widetilde{F}_{m}(X) / \sigma$ (the involution σ can be defined geometrically on $\left.\widetilde{F}_{m}(X)\right)$.

So we have another interpretation of the fiber of the period map

$$
J: \mathscr{X}_{10}^{\text {nodal }} \longrightarrow \partial \mathscr{A}_{10}
$$

as the union of two surfaces of the type $\widetilde{F}_{m}(X) / \sigma$ (the involution σ can be defined geometrically on $\left.\widetilde{F}_{m}(X)\right)$.
This is the degenerate case of a situation that we studied earlier:

So we have another interpretation of the fiber of the period map

$$
J: \mathscr{X}_{10}^{\text {nodal }} \longrightarrow \partial \mathscr{A}_{10}
$$

as the union of two surfaces of the type $\widetilde{F}_{m}(X) / \sigma$ (the involution σ can be defined geometrically on $\left.\widetilde{F}_{m}(X)\right)$.
This is the degenerate case of a situation that we studied earlier:

- if \mathscr{X}_{10} is the 22-dim'l moduli stack for smooth Fano threefolds X_{10},

So we have another interpretation of the fiber of the period map

$$
J: \mathscr{X}_{10}^{\text {nodal }} \longrightarrow \partial \mathscr{A}_{10}
$$

as the union of two surfaces of the type $\widetilde{F}_{m}(X) / \sigma$ (the involution σ can be defined geometrically on $\left.\widetilde{F}_{m}(X)\right)$.
This is the degenerate case of a situation that we studied earlier:

- if \mathscr{X}_{10} is the 22-dim'l moduli stack for smooth Fano threefolds X_{10},
- the general fiber of the period map

$$
J: \mathscr{X}_{10} \longrightarrow \mathscr{A}_{10}
$$

So we have another interpretation of the fiber of the period map

$$
J: \mathscr{X}_{10}^{\text {nodal }} \longrightarrow \partial \mathscr{A}_{10}
$$

as the union of two surfaces of the type $\widetilde{F}_{m}(X) / \sigma$ (the involution σ can be defined geometrically on $\left.\widetilde{F}_{m}(X)\right)$.
This is the degenerate case of a situation that we studied earlier:

- if \mathscr{X}_{10} is the 22-dim'l moduli stack for smooth Fano threefolds X_{10},
- the general fiber of the period map

$$
J: \mathscr{X}_{10} \longrightarrow \mathscr{A}_{10}
$$

is the union of finitely many disjoint (pairs of) smooth irreducible projective surfaces of the type $F_{m}(X) / \sigma$.

Threefolds X in the same component of a fiber are obtained one from another by explicit birational transformations associated with the choice of a conic in X.

Threefolds X in the same component of a fiber are obtained one from another by explicit birational transformations associated with the choice of a conic in X.
To any line contained in X, one can also associate another threefold of the same type in a different component of the fiber.

Threefolds X in the same component of a fiber are obtained one from another by explicit birational transformations associated with the choice of a conic in X.
To any line contained in X, one can also associate another threefold of the same type in a different component of the fiber. These correspond the two components that we described at the boundary.

Threefolds X in the same component of a fiber are obtained one from another by explicit birational transformations associated with the choice of a conic in X.
To any line contained in X, one can also associate another threefold of the same type in a different component of the fiber. These correspond the two components that we described at the boundary.
We conjecture that these are the only two components of a general fiber of the period map

$$
J: \mathscr{X}_{10} \longrightarrow \mathscr{A}_{10} .
$$

