The birational geometry of moduli spaces of even spin curves

Gavril Farkas

Humboldt Universität zu Berlin

September 8, 2010

Gavril Farkas

HU Berlin

- (古)

A spin curve of genus g is a pair (C, η) , with $[C] \in \mathcal{M}_g$ and $\eta \in \operatorname{Pic}^{g-1}(C)$ with $\eta^{\otimes 2} = K_C$ a theta characteristic.

 $\mathcal{S}_g := \{[C,\eta]\} \text{ moduli space of spin curves of genus } g.$ There is an étale covering $\pi : \mathcal{S}_g \to \mathcal{M}_g$, $\pi([C,\eta]) := [C]$. Spin curves come in 2 types, odd and even: $\mathcal{S}_g = \mathcal{S}_g^- \coprod \mathcal{S}_g^+$,

$$\mathcal{S}_{g}^{+} := \{ [\mathcal{C}, \eta] \in \mathcal{S}_{g} : h^{0}(\mathcal{C}, \eta) \equiv 0 \mod 2 \}$$

and

$$\mathcal{S}_g^- = := \{ [C,\eta] \in \mathcal{S}_g : h^0(C,\eta) \equiv 1 \mod 2 \}.$$

 $\deg(\mathcal{S}_{g}^{+}/\mathcal{M}_{g}) = 2^{g-1}(2^{g}+1) \ \deg(\mathcal{S}_{g}^{-}/\mathcal{M}_{g}) = 2^{g-1}(2^{g}-1).$

・ロト ・聞 ト ・ ヨト ・ ヨトー

HU Berlin

A spin curve of genus g is a pair (C, η) , with $[C] \in \mathcal{M}_g$ and $\eta \in \operatorname{Pic}^{g-1}(C)$ with $\eta^{\otimes 2} = K_C$ a *theta characteristic*.

 $S_g := \{[C, \eta]\}$ moduli space of spin curves of genus g. There is an étale covering $\pi : S_g \to \mathcal{M}_g$, $\pi([C, \eta]) := [C]$. Spin curves come in 2 types, odd and even: $S_g = S_\sigma^- [[S_\sigma^+, M_\sigma^+]]$

$$\mathcal{S}_{g}^{+} := \{ [C, \eta] \in \mathcal{S}_{g} : h^{0}(C, \eta) \equiv 0 \mod 2 \}$$

and

$$\mathcal{S}_{g}^{-} := \{ [C, \eta] \in \mathcal{S}_{g} : h^{0}(C, \eta) \equiv 1 \mod 2 \}.$$

 $\deg(\mathcal{S}_{g}^{+}/\mathcal{M}_{g}) = 2^{g-1}(2^{g}+1) \ \deg(\mathcal{S}_{g}^{-}/\mathcal{M}_{g}) = 2^{g-1}(2^{g}-1).$

ヘロト 人間 ト 人 ヨト 人 ヨトー

HU Berlin

A spin curve of genus g is a pair (C, η) , with $[C] \in \mathcal{M}_g$ and $\eta \in \operatorname{Pic}^{g-1}(C)$ with $\eta^{\otimes 2} = K_C$ a *theta characteristic*.

 $S_g := \{[C, \eta]\}$ moduli space of spin curves of genus g. There is an étale covering $\pi : S_g \to \mathcal{M}_g$, $\pi([C, \eta]) := [C]$. Spin curves come in 2 types, odd and even: $S_g = S_\sigma^- [[S_\sigma^+, M_\sigma^+]]$

$$\mathcal{S}_{g}^{+} := \{ [C,\eta] \in \mathcal{S}_{g} : h^{0}(C,\eta) \equiv 0 \mod 2 \}$$

and

$$\mathcal{S}_g^- := \{ [C,\eta] \in \mathcal{S}_g : h^0(C,\eta) \equiv 1 \mod 2 \}.$$

$$\deg(\mathcal{S}_{g}^{+}/\mathcal{M}_{g}) = 2^{g-1}(2^{g}+1) \ \deg(\mathcal{S}_{g}^{-}/\mathcal{M}_{g}) = 2^{g-1}(2^{g}-1).$$

イロト イ理ト イヨト イヨト

HU Berlin

Gavril Farkas

Theorem (Farkas, Verra 2010

- 1. The compactified moduli space \overline{S}_g^- of odd spin curves is of general type for $g \ge 12$.
- 2. \overline{S}_{g}^{-} is uniruled for $g \leq 11$ (unirational for $g \leq 9$).

Theorem

(Farkas 2009) \overline{S}_{g}^{+} is of general type for g > 8.

Theorem (Farkas, Verra 2009)

1. $\overline{\mathcal{S}}_{g}^{+}$ is uniruled for g < 8 (parametrization via Nikulin surfaces).

2. $\kappa(\overline{S}_8^+) = 0$; The Mukai model of \overline{S}_8^+ is Calabi-Yau of dimension 21.

HU Berlin

Gavril Farkas

Theorem (Farkas, Verra 2010)

- 1. The compactified moduli space $\overline{\mathcal{S}}_{g}^{-}$ of odd spin curves is of general type for $g \geq 12$.
- 2. $\overline{\mathcal{S}}_{g}^{-}$ is uniruled for $g \leq 11$ (unirational for $g \leq 9$).

Theorem

(Farkas 2009) \overline{S}_{g}^{+} is of general type for g > 8.

Theorem (Farkas, Verra 2009)

1. \overline{S}_{g}^{+} is uniruled for g < 8 (parametrization via Nikulin surfaces).

2. $\kappa(\overline{S}_8^+) = 0$; The Mukai model of \overline{S}_8^+ is Calabi-Yau of dimension 21.

HU Berlin

Gavril Farkas

Theorem (Farkas, Verra 2010)

- 1. The compactified moduli space $\overline{\mathcal{S}}_{g}^{-}$ of odd spin curves is of general type for $g \geq 12$.
- 2. \overline{S}_{g}^{-} is uniruled for $g \leq 11$ (unirational for $g \leq 9$).

Theorem

(Farkas 2009) $\overline{\mathcal{S}}_{g}^{+}$ is of general type for g > 8.

l heorem (Farkas, Verra 2009)

1. \overline{S}_{g}^{+} is uniruled for g < 8 (parametrization via Nikulin surfaces).

2. $\kappa(\overline{S}_8^+) = 0$; The Mukai model of \overline{S}_8^+ is Calabi-Yau of dimension 21.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Theorem (Farkas, Verra 2010)

- 1. The compactified moduli space $\overline{\mathcal{S}}_{g}^{-}$ of odd spin curves is of general type for $g \geq 12$.
- 2. \overline{S}_{g}^{-} is uniruled for $g \leq 11$ (unirational for $g \leq 9$).

Theorem

(Farkas 2009) $\overline{\mathcal{S}}_{g}^{+}$ is of general type for g > 8.

Theorem (Farkas, Verra 2009) 1. \overline{S}_{g}^{+} is uniruled for g < 8 (parametrization via Nikulin surfaces). 2. $\kappa(\overline{S}_{8}^{+}) = 0$; The Mukai model of \overline{S}_{8}^{+} is Calabi-Yau of dimension 21.

ヘロト 人間 ト 人 ヨト 人 ヨトー

Remark

1. For $8 \leq g \leq 11$: $\overline{\mathcal{S}}_{g}^{-}$ and $\overline{\mathcal{S}}_{g}^{+}$ have different Kodaira dimension! 2. $\kappa(\overline{\mathcal{M}}_{g})$ unknown for $17 \leq g \leq 21$; $\kappa(\mathcal{A}_{6})$ unknown.

Requirements for a compactification of \mathcal{S}_g :

- ► S
 _g should be modular (i.e. represent a DM stack), have good singularities.
- $\pi: \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$ should be a finite branched covering.

Solution: Cornalba compactification using stable spin curves.

イロト イヨト イヨト イヨト

Remark

1. For $8 \leq g \leq 11$: $\overline{\mathcal{S}}_{g}^{-}$ and $\overline{\mathcal{S}}_{g}^{+}$ have different Kodaira dimension! 2. $\kappa(\overline{\mathcal{M}}_{g})$ unknown for $17 \leq g \leq 21$; $\kappa(\mathcal{A}_{6})$ unknown.

Requirements for a compactification of S_g :

► S
_g should be modular (i.e. represent a DM stack), have good singularities.

•
$$\pi: \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$$
 should be a finite branched covering.

Solution: Cornalba compactification using stable spin curves.

・ロト ・聞 ト ・ ヨト ・ ヨトー

Remark

1. For $8 \leq g \leq 11$: $\overline{\mathcal{S}}_{g}^{-}$ and $\overline{\mathcal{S}}_{g}^{+}$ have different Kodaira dimension! 2. $\kappa(\overline{\mathcal{M}}_{g})$ unknown for $17 \leq g \leq 21$; $\kappa(\mathcal{A}_{6})$ unknown.

Requirements for a compactification of S_g :

- ► S_g should be modular (i.e. represent a DM stack), have good singularities.
- $\pi: \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$ should be a finite branched covering.

Solution: Cornalba compactification using stable spin curves.

・ロト ・聞 ト ・ヨト ・ヨト

A compactification of \mathcal{S}_g

Definition

A *stable* spin curve of genus g is a triple (X, η, β) , where:

- X is a quasi-stable with $p_a(X) = g$.
- ▶ $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle such that $\eta_E = \mathcal{O}_E(1)$, for every rational component $E \subset X$ with $|E \cap \overline{X E}| = 2$.
- ▶ $\beta : \eta^{\otimes 2} \to \omega_X$ is a sheaf-homomorphism such that $\beta_Z \neq 0$, for every non-exceptional component $Z \subset X$.

 $\overline{\mathcal{S}}_g$ is the coarse moduli space associated to the stack of spin curves. There is a ramified map $\pi : \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$ given by $\pi([X, \eta, \beta]) = [\operatorname{st}(X)]$.

Example

If $[C_{xy} := C/x \sim y] \in \Delta_0 \subset \overline{\mathcal{M}}_g$, with $[C, x, y] \in \mathcal{M}_{g-1,2}$, describe points $[X, \eta, \beta] \in \pi^{-1}([C_{xy}])$:

・ロト ・聞 ト ・ヨト ・ヨト

A compactification of \mathcal{S}_g

Definition

A *stable* spin curve of genus g is a triple (X, η, β) , where:

- X is a quasi-stable with $p_a(X) = g$.
- ▶ $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle such that $\eta_E = \mathcal{O}_E(1)$, for every rational component $E \subset X$ with $|E \cap \overline{X E}| = 2$.
- ▶ $\beta : \eta^{\otimes 2} \to \omega_X$ is a sheaf-homomorphism such that $\beta_Z \neq 0$, for every non-exceptional component $Z \subset X$.

 $\overline{\mathcal{S}}_g$ is the coarse moduli space associated to the stack of spin curves. There is a ramified map $\pi : \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$ given by $\pi([X, \eta, \beta]) = [\operatorname{st}(X)]$.

If $[C_{xy} := C/x \sim y] \in \Delta_0 \subset \overline{\mathcal{M}}_g$, with $[C, x, y] \in \mathcal{M}_{g-1,2}$, describe points $[X, \eta, \beta] \in \pi^{-1}([C_{xy}])$:

A compactification of \mathcal{S}_g

Definition

A *stable* spin curve of genus g is a triple (X, η, β) , where:

- X is a quasi-stable with $p_a(X) = g$.
- ▶ $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle such that $\eta_E = \mathcal{O}_E(1)$, for every rational component $E \subset X$ with $|E \cap \overline{X E}| = 2$.
- ▶ $\beta : \eta^{\otimes 2} \to \omega_X$ is a sheaf-homomorphism such that $\beta_Z \neq 0$, for every non-exceptional component $Z \subset X$.

 $\overline{\mathcal{S}}_g$ is the coarse moduli space associated to the stack of spin curves. There is a ramified map $\pi : \overline{\mathcal{S}}_g \to \overline{\mathcal{M}}_g$ given by $\pi([X, \eta, \beta]) = [\operatorname{st}(X)]$. Example

If
$$[C_{xy} := C/x \sim y] \in \Delta_0 \subset \overline{\mathcal{M}}_g$$
, with $[C, x, y] \in \mathcal{M}_{g-1,2}$, describe points $[X, \eta, \beta] \in \pi^{-1}([C_{xy}])$:

ヘロト 人間 ト 人 ヨト 人 ヨトー

Two types of spin curves over C_{xy} :

Spin curves corresponding to locally free sheaves on $X = C_{xy}$:

$$[C_{xy}, \eta_C \in \operatorname{Pic}^{g-1}(C), \eta_C^{\otimes 2} = K_C(x+y)] \in \overline{\mathcal{S}}_g^+.$$

Those corresponding to torsion free sheaves on C_{xy}; "blow-up" the node, get X := C ∪_{x,y} E, where E ≅ P¹.

$$[C \cup_{x,y} E, \quad \eta_E = \mathcal{O}_E(1), \quad \eta_C^{\otimes 2} = K_C] \in \overline{\mathcal{S}}_g^+.$$

Denote the closure in $\overline{\mathcal{S}}_g^+$ of these loci by A_0 and B_0 respectively. Set

$$lpha_0 := [A_0], \ eta_0 := [B_0] \in \mathsf{Pic}(\overline{\mathcal{S}}_g^+).$$

HU Berlin

Two types of spin curves over C_{xy} :

Spin curves corresponding to locally free sheaves on $X = C_{xy}$:

$$[C_{xy}, \eta_C \in \operatorname{Pic}^{g-1}(C), \eta_C^{\otimes 2} = K_C(x+y)] \in \overline{\mathcal{S}}_g^+.$$

Those corresponding to torsion free sheaves on C_{xy}; "blow-up" the node, get X := C ∪_{x,y} E, where E ≅ P¹.

$$[C \cup_{x,y} E, \ \eta_E = \mathcal{O}_E(1), \ \eta_C^{\otimes 2} = K_C] \in \overline{\mathcal{S}}_g^+.$$

Denote the closure in $\overline{\mathcal{S}}_{g}^{+}$ of these loci by A_{0} and B_{0} respectively. Set

$$lpha_0 := [A_0], \ eta_0 := [B_0] \in \mathsf{Pic}(\overline{\mathcal{S}}_g^+).$$

< 日 > < 圖 > < 画 > < 画 > 、

HU Berlin

Two types of spin curves over C_{xy} :

Spin curves corresponding to locally free sheaves on $X = C_{xy}$:

$$[\mathcal{C}_{xy}, \eta_{\mathcal{C}} \in \operatorname{Pic}^{g-1}(\mathcal{C}), \eta_{\mathcal{C}}^{\otimes 2} = \mathcal{K}_{\mathcal{C}}(x+y)] \in \overline{\mathcal{S}}_{g}^{+}.$$

Those corresponding to torsion free sheaves on C_{xy}; "blow-up" the node, get X := C ∪_{x,y} E, where E ≅ P¹.

$$[C \cup_{x,y} E, \quad \eta_E = \mathcal{O}_E(1), \quad \eta_C^{\otimes 2} = K_C] \in \overline{\mathcal{S}}_g^+.$$

Denote the closure in $\overline{\mathcal{S}}_g^+$ of these loci by A_0 and B_0 respectively. Set

$$\alpha_0 := [A_0], \ \beta_0 := [B_0] \in \mathsf{Pic}(\overline{\mathcal{S}}_g^+).$$

< ロ > < 四 > < 回 > < 回 > < 回 > 、

HU Berlin

To summarize:

- 1. $\pi^*(\delta_0) = \alpha_0 + 2\beta_0$.
- 2. B_0 is the ramification divisor of π .

The birational geometry of moduli spaces of even spin curves

Gavril Farkas

The canonical class of $K_{\overline{S}_g}^+$

The Hurwitz formula applied to the branched covering $\pi: \overline{\mathcal{S}}_g^+ \to \overline{\mathcal{M}}_g$:

$$\mathcal{K}^+_{\overline{\mathcal{S}}_g} = \pi^*(\mathcal{K}_{\overline{\mathcal{M}}_g}) + \beta_0 \equiv 13\lambda - 2lpha_0 - 3\beta_0 - \cdots \in \mathsf{Pic}(\overline{\mathcal{S}}^+_g).$$

Since singularities of $\overline{\mathcal{S}}_{g}^{+}$ impose no adjoint conditions (K. Ludwig), $\overline{\mathcal{S}}_{g}^{+}$ is of general type precisely when $K_{\overline{\mathcal{S}}_{g}^{+}}$ is big. To produce pluricanonical forms, we construct effective divisors $\mathfrak{D} \in \operatorname{Eff}(\overline{\mathcal{S}}_{g}^{+})$, such that

 $\mathcal{K}_{\overline{\mathcal{S}}_{\sigma}^+} = a\lambda + b[\mathfrak{D}] + \mathbb{Q}_{\geq 0} \cdot (\text{boundary divisors}),$

where a > 0 and $b \ge 0$.

The birational geometry of moduli spaces of even spin curves

・ロ・ ・ 一・ ・ ほ・ ・ ほ・

The canonical class of $K_{\overline{S}_g}^+$

The Hurwitz formula applied to the branched covering $\pi: \overline{\mathcal{S}}_g^+ \to \overline{\mathcal{M}}_g$:

$$\mathcal{K}^+_{\overline{\mathcal{S}}_g} = \pi^*(\mathcal{K}_{\overline{\mathcal{M}}_g}) + \beta_0 \equiv 13\lambda - 2lpha_0 - 3\beta_0 - \dots \in \mathsf{Pic}(\overline{\mathcal{S}}^+_g).$$

Since singularities of $\overline{\mathcal{S}}_{g}^{+}$ impose no adjoint conditions (K. Ludwig), $\overline{\mathcal{S}}_{g}^{+}$ is of general type precisely when $\mathcal{K}_{\overline{\mathcal{S}}_{g}^{+}}$ is big. To produce pluricanonical forms, we construct effective divisors $\mathfrak{D} \in \operatorname{Eff}(\overline{\mathcal{S}}_{g}^{+})$, such that

$$\mathcal{K}_{\overline{\mathcal{S}}_{g}^{+}} = a\lambda + b[\mathfrak{D}] + \mathbb{Q}_{\geq 0} \cdot (\text{boundary divisors}),$$

where a > 0 and $b \ge 0$.

The theta-null divisor

$\Theta_{\mathrm{null}} := \{[\mathcal{C},\eta] \in \mathcal{S}_g^+ : h^0(\mathcal{C},\eta) \geq 2\}$

 $[\mathcal{C},\eta]\in\Theta_{\mathrm{null}}\Leftrightarrow\exists \mathcal{Q}\in H^0(\mathcal{I}_{\mathcal{C}/\mathsf{P}^{g-1}}(2))\text{ with }\mathsf{rk}(\mathcal{Q})=3,\mathcal{C}\cap\mathrm{Sing}(\mathcal{Q})=\emptyset.$

Theorem

The class of the closure of Θ_{null} inside $\overline{\mathcal{S}}_{g}^{+}$ equals:

$$\overline{\Theta}_{\text{null}} \equiv \frac{\lambda}{4} - \frac{\alpha_0}{16} - \sum_{i=1}^{\lfloor g/2 \rfloor} \frac{\beta_i}{2} \in \text{Pic}(\overline{\mathcal{S}}_g^+).$$

Remark

 $\overline{\Theta}_{null}$ has very small slope (good!) but coefficient of β_0 is 0 (bad!). Thus $\overline{\Theta}_{null}$ alone will not suffice, to conclude that $K_{\overline{S}^+_{-}}$ is big.

<ロト < 団ト < 団ト < 団ト

The theta-null divisor

$$\Theta_{\mathrm{null}} := \{ [\mathcal{C}, \eta] \in \mathcal{S}_g^+ : h^0(\mathcal{C}, \eta) \ge 2 \}$$

 $[\mathcal{C},\eta]\in\Theta_{\mathrm{null}}\Leftrightarrow \exists \mathcal{Q}\in H^0(\mathcal{I}_{\mathcal{C}/\mathbf{P}^{g-1}}(2)) \text{ with } \mathsf{rk}(\mathcal{Q})=3, \mathcal{C}\cap\mathrm{Sing}(\mathcal{Q})=\emptyset.$

Theorem The class of the closure of $\Theta_{
m null}$ inside $\overline{\mathcal{S}}_g^+$ equals

$$\overline{\Theta}_{\mathrm{null}} \equiv rac{\lambda}{4} - rac{lpha_0}{16} - \sum_{i=1}^{\lfloor g/2
floor} rac{eta_i}{2} \in \mathrm{Pic}(\overline{\mathcal{S}}_g^+).$$

Remark

 Θ_{null} has very small slope (good!) but coefficient of β_0 is 0 (bad!). Thus $\overline{\Theta}_{\text{null}}$ alone will not suffice, to conclude that $K_{\overline{S}^+}$ is big.

Gavril Farkas

The birational geometry of moduli spaces of even spin curves

イロト イポト イヨト イヨト

The theta-null divisor

1

$$\Theta_{\mathrm{null}} := \{ [\mathcal{C}, \eta] \in \mathcal{S}_g^+ : h^0(\mathcal{C}, \eta) \ge 2 \}$$

 $[\mathcal{C},\eta]\in \Theta_{\mathrm{null}}\Leftrightarrow \exists \mathcal{Q}\in H^0(\mathcal{I}_{\mathcal{C}/\mathbf{P}^{g-1}}(2)) \text{ with } \mathsf{rk}(\mathcal{Q})=3, \mathcal{C}\cap \mathrm{Sing}(\mathcal{Q})=\emptyset.$

Theorem

The class of the closure of Θ_{null} inside $\overline{\mathcal{S}}_{g}^{+}$ equals:

$$\overline{\Theta}_{\mathrm{null}} \equiv rac{\lambda}{4} - rac{lpha_0}{16} - \sum_{i=1}^{\lfloor g/2
floor} rac{eta_i}{2} \in \mathrm{Pic}(\overline{\mathcal{S}}_g^+).$$

Remark

 Θ_{null} has very small slope (good!) but coefficient of β_0 is 0 (bad!). Thus $\overline{\Theta}_{\text{null}}$ alone will not suffice, to conclude that $K_{\overline{S}^+}$ is big.

< ロ > < 同 > < 回 > < 回 > < 回 >

The theta-null divisor

$$\Theta_{\mathrm{null}} := \{ [\mathcal{C}, \eta] \in \mathcal{S}_g^+ : h^0(\mathcal{C}, \eta) \ge 2 \}$$

 $[\mathcal{C},\eta]\in \Theta_{\mathrm{null}}\Leftrightarrow \exists \mathcal{Q}\in H^0(\mathcal{I}_{\mathcal{C}/\mathsf{P}^{g-1}}(2)) \text{ with } \mathsf{rk}(\mathcal{Q})=3, \mathcal{C}\cap \mathrm{Sing}(\mathcal{Q})=\emptyset.$

Theorem

The class of the closure of Θ_{null} inside $\overline{\mathcal{S}}_{g}^{+}$ equals:

$$\overline{\Theta}_{\mathrm{null}} \equiv rac{\lambda}{4} - rac{lpha_0}{16} - \sum_{i=1}^{\lfloor g/2
floor} rac{eta_i}{2} \in \mathrm{Pic}(\overline{\mathcal{S}}_g^+).$$

Remark

 $\overline{\Theta}_{null}$ has very small slope (good!) but coefficient of β_0 is 0 (bad!). Thus $\overline{\Theta}_{null}$ alone will not suffice, to conclude that $K_{\overline{S}_{\pi}^+}$ is big.

Gavril Farkas

The birational geometry of moduli spaces of even spin curves

イロト イポト イヨト イヨト

Brill-Noether divisors

Fix integers $r, d \ge 1$ such that $\rho(g, r, d) = -1$. Set

$$\mathcal{M}_{g,d}^r := \{ [C] \in \mathcal{M}_g : C \text{ has a } \mathfrak{g}_d^r \}.$$

Theorem

When $\rho(g, r, d) = -1$, the locus $\mathcal{M}_{g,d}^r$ is an irreducible divisor in \mathcal{M}_g . Moreover, the class of its closure in $\overline{\mathcal{M}}_g$ is:

$$\overline{\mathcal{M}}_{g,d}^r = c_{g,r,d} \Big((g+3)\lambda - \frac{g+1}{6}\delta_0 - \sum_{i=1}^{\lfloor g/2 \rfloor} i(g-i)\delta_i \Big).$$

Form a linear combination on $\overline{\mathcal{S}}_g^+$: $(K_{\overline{\mathcal{S}}_g^+} \equiv 13\lambda - 2\alpha_0 - 3\beta_0 - \cdots)$

$$a\cdot\pi^*(\overline{\mathcal{M}}_{g,d}^r)+8\cdot\overline{\Theta}_{\mathrm{null}}\equivrac{11g+29}{g+1}\lambda-2lpha_0-3eta_0-\cdots.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HU Berlin

Brill-Noether divisors

Fix integers $r, d \ge 1$ such that $\rho(g, r, d) = -1$. Set

$$\mathcal{M}_{g,d}^r := \{ [C] \in \mathcal{M}_g : C \text{ has a } \mathfrak{g}_d^r \}.$$

Theorem

When $\rho(g, r, d) = -1$, the locus $\mathcal{M}_{g,d}^r$ is an irreducible divisor in \mathcal{M}_g . Moreover, the class of its closure in $\overline{\mathcal{M}}_g$ is:

$$\overline{\mathcal{M}}_{g,d}^r = c_{g,r,d} \Big((g+3)\lambda - \frac{g+1}{6}\delta_0 - \sum_{i=1}^{\lfloor g/2 \rfloor} i(g-i)\delta_i \Big).$$

Form a linear combination on $\overline{\mathcal{S}}_{g}^{+}$: $(K_{\overline{\mathcal{S}}_{g}^{+}} \equiv 13\lambda - 2\alpha_{0} - 3\beta_{0} - \cdots)$

$$a\cdot\pi^*(\overline{\mathcal{M}}_{g,d}^r)+8\cdot\overline{\Theta}_{\mathrm{null}}\equivrac{11g+29}{g+1}\lambda-2lpha_0-3eta_0-\cdots.$$

The birational geometry of moduli spaces of even spin curves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Brill-Noether divisors

Fix integers $r, d \ge 1$ such that $\rho(g, r, d) = -1$. Set

$$\mathcal{M}_{g,d}^r := \{ [C] \in \mathcal{M}_g : C \text{ has a } \mathfrak{g}_d^r \}.$$

Theorem

When $\rho(g, r, d) = -1$, the locus $\mathcal{M}_{g,d}^r$ is an irreducible divisor in \mathcal{M}_g . Moreover, the class of its closure in $\overline{\mathcal{M}}_g$ is:

$$\overline{\mathcal{M}}_{g,d}^{r} = c_{g,r,d} \Big((g+3)\lambda - \frac{g+1}{6}\delta_0 - \sum_{i=1}^{\lfloor g/2 \rfloor} i(g-i)\delta_i \Big).$$

Form a linear combination on $\overline{\mathcal{S}}_g^+$: $(\mathcal{K}_{\overline{\mathcal{S}}_g^+} \equiv 13\lambda - 2\alpha_0 - 3\beta_0 - \cdots)$

$$a\cdot\pi^*(\overline{\mathcal{M}}_{g,d}^r)+8\cdot\overline{\Theta}_{\mathrm{null}}\equivrac{11g+29}{g+1}\lambda-2lpha_0-3eta_0-\cdots$$

Gavril Farkas

The birational geometry of moduli spaces of even spin curves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\overline{\mathcal{S}}_g^+$$
 is a variety of general type whenever

$$\frac{11g+29}{g+1} < 13 \Longleftrightarrow g > 8.$$

For g=8, the argument above shows that $\kappa(\overline{\mathcal{S}}^+_8)\geq 0;\;\;\exists a,a_i,b_i>0,$

$$K_{\overline{\mathcal{S}}_8^+} \equiv \mathbf{a} \cdot \pi^* (\overline{\mathcal{M}}_{8,7}^2) + 8 \cdot \overline{\Theta}_{\mathrm{null}} + \sum_{i=1}^4 (\mathbf{a}_i \cdot \alpha_i + \mathbf{b}_i \cdot \beta_i),$$

where $\overline{\mathcal{M}}_{8,7}^2 \subset \overline{\mathcal{M}}_8$ is the irreducible locus of plane septics, and $\alpha_i, \beta_i \subset \overline{\mathcal{S}}_g^+$ correspond to loci of curves of compact type. Goal: Show that $\kappa(\overline{\mathcal{S}}_8^+) = 0$, i.e. this sum of divisors is rigid on $\overline{\mathcal{S}}_8^+$. In so, $\overline{\mathcal{S}}_8^+$ would be the first example of a moduli space of intermediate Kodaira dimension.

・ロト ・ 日 ・ ・ ヨ ト ・

 $\overline{\mathcal{S}}_{g}^{+}$ is a variety of general type whenever

$$\frac{11g+29}{g+1} < 13 \Longleftrightarrow g > 8.$$

For g = 8, the argument above shows that $\kappa(\overline{\mathcal{S}}_8^+) \ge 0$; $\exists a, a_i, b_i > 0$,

$$\mathcal{K}_{\overline{\mathcal{S}}_8^+} \equiv \mathbf{a} \cdot \pi^* (\overline{\mathcal{M}}_{8,7}^2) + 8 \cdot \overline{\Theta}_{\mathrm{null}} + \sum_{i=1}^4 (\mathbf{a}_i \cdot \alpha_i + \mathbf{b}_i \cdot \beta_i),$$

where $\overline{\mathcal{M}}_{8,7}^2 \subset \overline{\mathcal{M}}_8$ is the irreducible locus of plane septics, and $\alpha_i, \beta_i \subset \overline{\mathcal{S}}_g^+$ correspond to loci of curves of compact type. Goal: Show that $\kappa(\overline{\mathcal{S}}_8^+) = 0$, i.e. this sum of divisors is rigid on $\overline{\mathcal{S}}_8^+$. In so, $\overline{\mathcal{S}}_8^+$ would be the first example of a moduli space of intermediate Kodaira dimension.

Image: A marked and A marked

HU Berlin

 $\overline{\mathcal{S}}_{g}^{+}$ is a variety of general type whenever

$$\frac{11g+29}{g+1} < 13 \Longleftrightarrow g > 8.$$

For g = 8, the argument above shows that $\kappa(\overline{\mathcal{S}}_8^+) \ge 0$; $\exists a, a_i, b_i > 0$,

$$\mathcal{K}_{\overline{\mathcal{S}}_8^+} \equiv \mathbf{a} \cdot \pi^* (\overline{\mathcal{M}}_{8,7}^2) + 8 \cdot \overline{\Theta}_{\mathrm{null}} + \sum_{i=1}^4 (\mathbf{a}_i \cdot \alpha_i + \mathbf{b}_i \cdot \beta_i),$$

where $\overline{\mathcal{M}}_{8,7}^2 \subset \overline{\mathcal{M}}_8$ is the irreducible locus of plane septics, and $\alpha_i, \beta_i \subset \overline{\mathcal{S}}_g^+$ correspond to loci of curves of compact type. Goal: Show that $\kappa(\overline{\mathcal{S}}_8^+) = 0$, i.e. this sum of divisors is rigid on $\overline{\mathcal{S}}_8^+$. In so, $\overline{\mathcal{S}}_8^+$ would be the first example of a moduli space of intermediate Kodaira dimension.

- ► Each component of $K_{\overline{S}_8^+}$ is a uniruled, rigid, extremal divisor on \overline{S}_8^+ .
- \blacktriangleright Construct a covering curve $\mathfrak{R}\subset\overline{\Theta}_{\mathrm{null}}$ such that

$$\mathfrak{R} \cdot \pi^*(\overline{\mathcal{M}}_{8,7}^2) = 0, \ \mathfrak{R} \cdot \alpha_i = \mathfrak{R} \cdot \beta_i = 0 \ \text{ for } i \geq 1, \ \mathfrak{R} \cdot \overline{\Theta}_{\mathrm{null}} < 0.$$

Then $|nK_{\overline{S}_8^+}| = 8n \cdot \overline{\Theta}_{null} + |n(K_{\overline{S}_8^+} - 8\overline{\Theta}_{null})|$, and one repeats the procedure and removes $\pi^*(\overline{\mathcal{M}}_{8,7}^2)$ from the canonical system, then the boundary divisors. The most difficult step is the removal of $\overline{\Theta}_{null}$.

Mukai's model of $\overline{\mathcal{M}}_8$: Fix $V = \mathbb{C}^6$ and

$$\mathbf{G} := G(2, V) \hookrightarrow \mathbf{P}(\wedge^2 V) = \mathbf{P}^{14}$$

the Grassmannian of lines in \mathbf{P}^5 . Note that $\dim(\mathbf{G}) = 8$, $K_{\mathbf{G}} = \mathcal{O}_{\mathbf{G}}(-6)$, and that curve linear sections of \mathbf{G} are canonical curves of genus 8.

The birational geometry of moduli spaces of even spin curves

・ロト ・聞ト ・ヨト ・ヨト

- Each component of $K_{\overline{S}_8^+}$ is a uniruled, rigid, extremal divisor on \overline{S}_8^+ .
- \blacktriangleright Construct a covering curve $\mathfrak{R}\subset\overline{\Theta}_{\mathrm{null}}$ such that

$$\mathfrak{R} \cdot \pi^*(\overline{\mathcal{M}}_{8,7}^2) = 0, \ \mathfrak{R} \cdot \alpha_i = \mathfrak{R} \cdot \beta_i = 0 \ \text{ for } i \geq 1, \ \mathfrak{R} \cdot \overline{\Theta}_{\mathrm{null}} < 0.$$

Then $|nK_{\overline{S}_8^+}| = 8n \cdot \overline{\Theta}_{null} + |n(K_{\overline{S}_8^+} - 8\overline{\Theta}_{null})|$, and one repeats the procedure and removes $\pi^*(\overline{\mathcal{M}}_{8,7}^2)$ from the canonical system, then the boundary divisors. The most difficult step is the removal of $\overline{\Theta}_{null}$.

Mukai's model of $\overline{\mathcal{M}}_8$: Fix $V = \mathbb{C}^6$ and

$$\mathbf{G} := G(2, V) \hookrightarrow \mathbf{P}(\wedge^2 V) = \mathbf{P}^{14}$$

the Grassmannian of lines in \mathbf{P}^5 . Note that $\dim(\mathbf{G}) = 8$, $K_{\mathbf{G}} = \mathcal{O}_{\mathbf{G}}(-6)$, and that curve linear sections of \mathbf{G} are canonical curves of genus 8.

The birational geometry of moduli spaces of even spin curves

< 日 > < 圖 > < 画 > < 画 > 、

- Each component of $K_{\overline{S}_8^+}$ is a uniruled, rigid, extremal divisor on \overline{S}_8^+ .
- \blacktriangleright Construct a covering curve $\mathfrak{R}\subset\overline{\Theta}_{\mathrm{null}}$ such that

$$\mathfrak{R} \cdot \pi^*(\overline{\mathcal{M}}_{8,7}^2) = 0, \ \mathfrak{R} \cdot \alpha_i = \mathfrak{R} \cdot \beta_i = 0 \ \text{ for } i \geq 1, \ \mathfrak{R} \cdot \overline{\Theta}_{\mathrm{null}} < 0.$$

Then $|nK_{\overline{S}_8^+}| = 8n \cdot \overline{\Theta}_{null} + |n(K_{\overline{S}_8^+} - 8\overline{\Theta}_{null})|$, and one repeats the procedure and removes $\pi^*(\overline{\mathcal{M}}_{8,7}^2)$ from the canonical system, then the boundary divisors. The most difficult step is the removal of $\overline{\Theta}_{null}$.

Mukai's model of $\overline{\mathcal{M}}_8$: Fix $V = \mathbb{C}^6$ and

$$\mathbf{G} := G(2, V) \hookrightarrow \mathbf{P}(\wedge^2 V) = \mathbf{P}^{14}$$

the Grassmannian of lines in \mathbf{P}^5 . Note that $\dim(\mathbf{G}) = 8$, $K_{\mathbf{G}} = \mathcal{O}_{\mathbf{G}}(-6)$, and that curve linear sections of \mathbf{G} are canonical curves of genus 8.

The birational geometry of moduli spaces of even spin curves

ヘロト 人間 ト 人 ヨト 人 ヨトー

Mukai model of \mathcal{M}_8

$$\mathfrak{M}_8 := G(8, \wedge^2 V)^{ss} // SL(V)$$

There is a birational map $\phi : \overline{\mathcal{M}}_8 \dashrightarrow \mathfrak{M}_8$, given by $\phi^{-1}(H) := [\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho(\mathfrak{M}_8) = 1$ (whereas $\rho(\overline{\mathcal{M}}_8) = 6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.

Theorem

The morphism ϕ contracts the boundary divisors $\Delta_1, \ldots, \Delta_4 \subset \overline{\mathcal{M}}_8$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^2$ down to a point.

Let $[C, \eta] \in \Theta_{\text{null}}$, and $Q_C \in H^0(\mathcal{I}_{C/P^7}(2))$ rank 3 quadric inducing η . Restriction induces an isomorphism at the level of quadrics:

$$\operatorname{res}_{C}: H^{0}(\mathbf{P}^{14}, \mathcal{I}_{\mathbf{G}/\mathbf{P}^{14}}(2)) \stackrel{\cong}{\longrightarrow} H^{0}(\mathbf{P}^{7}, \mathcal{I}_{C/\mathbf{P}^{7}}(2)).$$

Let $Q_{\mathbf{G}} \in H^0(\mathcal{I}_{\mathbf{G}/\mathbf{P}^{14}}(2))$ be the lift of the rank 3 quadric $Q_{\mathcal{C}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mukai model of \mathcal{M}_8

$$\mathfrak{M}_8 := G(8, \wedge^2 V)^{ss} // SL(V)$$

There is a birational map $\phi : \overline{\mathcal{M}}_8 \dashrightarrow \mathfrak{M}_8$, given by $\phi^{-1}(H) := [\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho(\mathfrak{M}_8) = 1$ (whereas $\rho(\overline{\mathcal{M}}_8) = 6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.

Theorem

The morphism ϕ contracts the boundary divisors $\Delta_1, \ldots, \Delta_4 \subset \overline{\mathcal{M}}_8$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^2$ down to a point.

Let $[C, \eta] \in \Theta_{\text{null}}$, and $Q_C \in H^0(\mathcal{I}_{C/P^7}(2))$ rank 3 quadric inducing η . Restriction induces an isomorphism at the level of quadrics:

$$\operatorname{res}_{C}: H^{0}(\mathbf{P}^{14}, \mathcal{I}_{\mathbf{G}/\mathbf{P}^{14}}(2)) \stackrel{\cong}{\longrightarrow} H^{0}(\mathbf{P}^{7}, \mathcal{I}_{C/\mathbf{P}^{7}}(2)).$$

Let $Q_{\mathbf{G}} \in H^0(\mathcal{I}_{\mathbf{G}/\mathbf{P}^{14}}(2))$ be the lift of the rank 3 quadric $Q_{\mathcal{C}}$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Mukai model of \mathcal{M}_8

$$\mathfrak{M}_8 := G(8, \wedge^2 V)^{ss} // SL(V)$$

There is a birational map $\phi : \overline{\mathcal{M}}_8 \dashrightarrow \mathfrak{M}_8$, given by $\phi^{-1}(H) := [\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho(\mathfrak{M}_8) = 1$ (whereas $\rho(\overline{\mathcal{M}}_8) = 6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.

Theorem

The morphism ϕ contracts the boundary divisors $\Delta_1, \ldots, \Delta_4 \subset \overline{\mathcal{M}}_8$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^2$ down to a point.

Let $[C, \eta] \in \Theta_{\text{null}}$, and $Q_C \in H^0(\mathcal{I}_{C/\mathbf{P}^7}(2))$ rank 3 quadric inducing η . Restriction induces an isomorphism at the level of quadrics:

$$\operatorname{res}_{\mathcal{C}}: H^0(\mathbf{P}^{14}, \mathcal{I}_{\mathbf{G}/\mathbf{P}^{14}}(2)) \stackrel{\cong}{\longrightarrow} H^0(\mathbf{P}^7, \mathcal{I}_{\mathcal{C}/\mathbf{P}^7}(2)).$$

Let $Q_{\mathbf{G}} \in H^0(\mathcal{I}_{\mathbf{G}/\mathbf{P}^{14}}(2))$ be the lift of the rank 3 quadric $Q_{\mathcal{C}}$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Mukai model of $\overline{\mathcal{M}}_8$

$$\mathfrak{M}_8 := G(8, \wedge^2 V)^{ss} // SL(V)$$

There is a birational map $\phi : \overline{\mathcal{M}}_8 \dashrightarrow \mathfrak{M}_8$, given by $\phi^{-1}(H) := [\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho(\mathfrak{M}_8) = 1$ (whereas $\rho(\overline{\mathcal{M}}_8) = 6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.

Theorem

The morphism ϕ contracts the boundary divisors $\Delta_1, \ldots, \Delta_4 \subset \overline{\mathcal{M}}_8$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^2$ down to a point.

Let $[C, \eta] \in \Theta_{\text{null}}$, and $Q_C \in H^0(\mathcal{I}_{C/\mathbf{P}^7}(2))$ rank 3 quadric inducing η . Restriction induces an isomorphism at the level of quadrics:

$$\mathsf{res}_{\mathcal{C}}: \operatorname{H}^0\bigl(\operatorname{\mathbf{P}}^{14}, \operatorname{\mathcal{I}}_{\operatorname{\mathbf{G}}/\operatorname{\mathbf{P}}^{14}}(2)\bigr) \overset{\cong}{\longrightarrow} \operatorname{H}^0\bigl(\operatorname{\mathbf{P}}^7, \operatorname{\mathcal{I}}_{\operatorname{\mathcal{C}}/\operatorname{\mathbf{P}}^7}(2)\bigr).$$

Let $Q_{\mathbf{G}} \in H^{0}(\mathcal{I}_{\mathbf{G}/\mathbf{P}^{14}}(2))$ be the lift of the rank 3 quadric Q_{C} .

For each such extension, Q_C lifts to a quadric $Q_S \in H^0(\mathbf{P}^8, \mathcal{I}_{S/\mathbf{P}^8}(2))$.

 $\mathsf{rk}(Q_S) \leq 2 + \mathsf{rk}(Q_C) = 5.$

Proposition

There exists a K3 extension $C \subset S \subset \mathbf{G} \subset \mathbf{P}^{14}$ with $\operatorname{rk}(Q_5) = 4$. One has a finite covering $f : S \to Q_0 := \mathbf{P}^1 \times \mathbf{P}^1 \hookrightarrow \mathbf{P}^3$. The two projections induce elliptic pencils $|E_1|, |E_2|$ on S (thus $E_1^2 = E_2^2 = 0$), and $C \equiv E_1 + E_2$. Since g(C) = 8, it follows $E_1 \cdot E_2 = \deg(f) = 7$.

HU Berlin

For each such extension, Q_C lifts to a quadric $Q_S \in H^0(\mathbf{P}^8, \mathcal{I}_{S/\mathbf{P}^8}(2))$.

 $\mathsf{rk}(Q_S) \leq 2 + \mathsf{rk}(Q_C) = 5.$

Proposition

There exists a K3 extension $C \subset S \subset \mathbf{G} \subset \mathbf{P}^{14}$ with $\operatorname{rk}(Q_S) = 4$. One has a finite covering $f : S \to Q_0 := \mathbf{P}^1 \times \mathbf{P}^1 \hookrightarrow \mathbf{P}^3$. The two projections induce elliptic pencils $|E_1|, |E_2|$ on S (thus $E_1^2 = E_2^2 = 0$), and $C \equiv E_1 + E_2$. Since g(C) = 8, it follows $E_1 \cdot E_2 = \deg(f) = 7$.

HU Berlin

For each such extension, Q_C lifts to a quadric $Q_S \in H^0(\mathbf{P}^8, \mathcal{I}_{S/\mathbf{P}^8}(2))$.

$$\mathsf{rk}(Q_S) \leq 2 + \mathsf{rk}(Q_C) = 5.$$

Proposition

There exists a K3 extension $C \subset S \subset \mathbf{G} \subset \mathbf{P}^{14}$ with $\operatorname{rk}(Q_S) = 4$.

One has a finite covering $f : S \to Q_0 := \mathbf{P}^1 \times \mathbf{P}^1 \hookrightarrow \mathbf{P}^3$. The two projections induce elliptic pencils $|E_1|, |E_2|$ on S (thus $E_1^2 = E_2^2 = 0$), and $C \equiv E_1 + E_2$. Since g(C) = 8, it follows $E_1 \cdot E_2 = \deg(f) = 7$.

HU Berlin

For each such extension, Q_C lifts to a quadric $Q_S \in H^0(\mathbf{P}^8, \mathcal{I}_{S/\mathbf{P}^8}(2))$.

$$\mathsf{rk}(Q_S) \leq 2 + \mathsf{rk}(Q_C) = 5.$$

Proposition

There exists a K3 extension $C \subset S \subset \mathbf{G} \subset \mathbf{P}^{14}$ with $\operatorname{rk}(Q_S) = 4$. One has a finite covering $f : S \to Q_0 := \mathbf{P}^1 \times \mathbf{P}^1 \hookrightarrow \mathbf{P}^3$. The two projections induce elliptic pencils $|E_1|, |E_2|$ on S (thus $E_1^2 = E_2^2 = 0$), and $C \equiv E_1 + E_2$. Since g(C) = 8, it follows $E_1 \cdot E_2 = \deg(f) = 7$.

HU Berlin

A covering family for $\overline{\Theta}_{null}$: $f: S \xrightarrow{7:1} Q_0$ If $l_0 \subset \mathbf{P}^3$ is a general line, then \mathfrak{R} is induced by planes through l_0 :

 $\mathfrak{R} := f^*(\text{planes through } l_0) \subset \overline{\mathcal{S}}_8^+.$

HU Berlin

Gavril Farkas

- $\Re \cdot \lambda = \pi_*(\Re) \cdot \lambda = g + 1 = 9.$
- ℜ · (α₀ + 2β₀) = π_{*}(ℜ) · δ₀ = 6(g + 3) = 66 (number of singular fibres in a pencil of genus g curves on a K3 surface).

The pencil $\Re \subset \overline{S}_8^+$ contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in \mathbf{P}^3 containing the rulings through the points $I_0 \cap Q_0$. Each of these counts with multiplicity 7/2 (the division by 2 because of the branching of β_0). Therefore

$$\Re \cdot \beta_0 = \frac{7}{2} + \frac{7}{2} = 7$$

and then $\Re \cdot \alpha_0 = 52$.

$$\mathfrak{R} \cdot \overline{\Theta}_{\mathrm{null}} = \mathfrak{R} \cdot \left(\frac{\lambda}{4} - \frac{\alpha_0}{16} \right) = \frac{9}{4} - \frac{52}{16} = -1 < 0.$$

< ロ > < 同 > < 回 > < 回 > < 回

HU Berlin

Conclusion: $\kappa(\overline{\mathcal{S}}_8^+) = 0.$

•
$$\mathfrak{R} \cdot \lambda = \pi_*(\mathfrak{R}) \cdot \lambda = g + 1 = 9.$$

ℜ · (α₀ + 2β₀) = π_{*}(ℜ) · δ₀ = 6(g + 3) = 66 (number of singular fibres in a pencil of genus g curves on a K3 surface).

The pencil $\mathfrak{R} \subset \overline{S}_{8}^{+}$ contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in \mathbf{P}^{3} containing the rulings through the points $l_{0} \cap Q_{0}$. Each of these counts with multiplicity 7/2 (the division by 2 because of the branching of β_{0}). Therefore

$$\Re \cdot \beta_0 = \frac{7}{2} + \frac{7}{2} = 7$$

and then $\Re \cdot \alpha_0 = 52$.

$$\mathfrak{R} \cdot \overline{\Theta}_{\mathrm{null}} = \mathfrak{R} \cdot \left(rac{\lambda}{4} - rac{lpha_0}{16}
ight) = rac{9}{4} - rac{52}{16} = -1 < 0.$$

・ロト ・聞ト ・ヨト ・ヨト

HU Berlin

Conclusion: $\kappa(\overline{\mathcal{S}}_8^+) = 0.$

•
$$\mathfrak{R} \cdot \lambda = \pi_*(\mathfrak{R}) \cdot \lambda = g + 1 = 9.$$

ℜ · (α₀ + 2β₀) = π_{*}(ℜ) · δ₀ = 6(g + 3) = 66 (number of singular fibres in a pencil of genus g curves on a K3 surface).

The pencil $\mathfrak{R} \subset \overline{\mathcal{S}}_8^+$ contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in \mathbf{P}^3 containing the rulings through the points $l_0 \cap Q_0$. Each of these counts with multiplicity 7/2 (the division by 2 because of the branching of β_0). Therefore

$$\Re \cdot \beta_0 = \frac{7}{2} + \frac{7}{2} = 7$$

and then $\Re \cdot \alpha_0 = 52$.

$$\mathfrak{R} \cdot \overline{\Theta}_{\mathrm{null}} = \mathfrak{R} \cdot \left(rac{\lambda}{4} - rac{lpha_0}{16}
ight) = rac{9}{4} - rac{52}{16} = -1 < 0.$$

Conclusion: $\kappa(\overline{\mathcal{S}}_8^+) = 0.$

The birational geometry of moduli spaces of even spin curves

ヘロン 人間 とくほと くほとう

•
$$\mathfrak{R} \cdot \lambda = \pi_*(\mathfrak{R}) \cdot \lambda = g + 1 = 9.$$

ℜ · (α₀ + 2β₀) = π_{*}(ℜ) · δ₀ = 6(g + 3) = 66 (number of singular fibres in a pencil of genus g curves on a K3 surface).

The pencil $\mathfrak{R} \subset \overline{\mathcal{S}}_8^+$ contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in \mathbf{P}^3 containing the rulings through the points $l_0 \cap Q_0$. Each of these counts with multiplicity 7/2 (the division by 2 because of the branching of β_0). Therefore

$$\Re \cdot \beta_0 = \frac{7}{2} + \frac{7}{2} = 7$$

and then $\Re \cdot \alpha_0 = 52$.

$$\mathfrak{R} \cdot \overline{\Theta}_{\mathrm{null}} = \mathfrak{R} \cdot \left(rac{\lambda}{4} - rac{lpha_0}{16}
ight) = rac{9}{4} - rac{52}{16} = -1 < 0.$$

Conclusion: $\kappa(\overline{\mathcal{S}}_8^+) = 0.$

The birational geometry of moduli spaces of even spin curves

イロト イポト イヨト イヨト

Given a K3 surface S and a collection $\{R_j\}_{j=1}^N$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a 2 : 1 cover $\widetilde{S} \to S$ branched precisely along $\bigcup_{i=1}^N R_i$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that

$$2e = \mathcal{O}_S(R_1 + \cdots + R_N).$$

Answer:

1. N = 16 and S is birational to an abelian variety: Kummer surface.

2. N = 8 and S is again a K3 surface: Nikulin surface

We introduce several moduli spaces: the Prym moduli space

$$\mathcal{R}_{g} := \{ [C, \eta] : [C] \in \mathcal{M}_{g}, \ \eta \in \operatorname{Pic}^{0}(C), \ \eta^{\otimes 2} = \mathcal{O}_{C} \}.$$

Moduli space of Nikulin surfaces

$$\mathcal{N}_g := \{ [S, \mathcal{O}_S(C), e] : C^2 = 2g - 2, \operatorname{Pic}(S) \supset \mathbb{Z} \langle R_1, \dots, R_8, C \rangle, \}$$

 $R_i^2 = -2, \ R_i \cdot R_j = 0 \text{ for } i \neq j, \ C \cdot R_i = 0, \ 2e = \mathcal{O}_C(R_1 + \dots + R_8)\}.$

<ロト < 団ト < 団ト < 団ト

Given a K3 surface S and a collection $\{R_j\}_{j=1}^N$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a 2 : 1 cover $\widetilde{S} \to S$ branched precisely along $\bigcup_{i=1}^N R_i$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that

$$2e = \mathcal{O}_S(R_1 + \cdots + R_N).$$

Answer:

1. N = 16 and \tilde{S} is birational to an abelian variety: Kummer surface. 2. N = 8 and \tilde{S} is again a K3 surface: Nikulin surface

We introduce several moduli spaces: the Prym moduli space

 $\mathcal{R}_{g} := \{ [C, \eta] : [C] \in \mathcal{M}_{g}, \ \eta \in \operatorname{Pic}^{0}(C), \ \eta^{\otimes 2} = \mathcal{O}_{C} \}.$

Moduli space of Nikulin surfaces

$$\mathcal{N}_g := \{ [S, \mathcal{O}_S(C), e] : C^2 = 2g - 2, \operatorname{Pic}(S) \supset \mathbb{Z} \langle R_1, \dots, R_8, C \rangle, \}$$

 $R_i^2 = -2, \ R_i \cdot R_j = 0 \text{ for } i \neq j, \ C \cdot R_i = 0, \ 2e = \mathcal{O}_C(R_1 + \dots + R_8)\}.$

Given a K3 surface S and a collection $\{R_j\}_{j=1}^N$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a 2 : 1 cover $\widetilde{S} \to S$ branched precisely along $\bigcup_{i=1}^N R_i$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that

$$2e = \mathcal{O}_S(R_1 + \cdots + R_N).$$

Answer:

- 1. N = 16 and \tilde{S} is birational to an abelian variety: Kummer surface.
- 2. N = 8 and \tilde{S} is again a K3 surface: Nikulin surface

We introduce several moduli spaces: the Prym moduli space

$$\mathcal{R}_{g} := \{ [C, \eta] : [C] \in \mathcal{M}_{g}, \ \eta \in \operatorname{Pic}^{0}(C), \ \eta^{\otimes 2} = \mathcal{O}_{C} \}.$$

Moduli space of Nikulin surfaces

$$\mathcal{N}_g := \{ [S, \mathcal{O}_S(C), e] : C^2 = 2g - 2, \operatorname{Pic}(S) \supset \mathbb{Z} \langle R_1, \dots, R_8, C \rangle, \}$$

 $R_i^2 = -2, \ R_i \cdot R_j = 0 \text{ for } i \neq j, \ C \cdot R_i = 0, \ 2e = \mathcal{O}_C(R_1 + \dots + R_8)\}.$

(ロ) (部) (目) (日) (日)

Given a K3 surface S and a collection $\{R_j\}_{j=1}^N$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a 2 : 1 cover $\widetilde{S} \to S$ branched precisely along $\bigcup_{i=1}^N R_i$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that

$$2e = \mathcal{O}_S(R_1 + \cdots + R_N).$$

Answer:

- 1. N = 16 and \widetilde{S} is birational to an abelian variety: Kummer surface.
- 2. N = 8 and \tilde{S} is again a K3 surface: Nikulin surface

We introduce several moduli spaces: the Prym moduli space

$$\mathcal{R}_{g} := \{ [C, \eta] : [C] \in \mathcal{M}_{g}, \ \eta \in \operatorname{Pic}^{0}(C), \ \eta^{\otimes 2} = \mathcal{O}_{C} \}.$$

Moduli space of Nikulin surfaces

$$\mathcal{N}_g := \{ [S, \mathcal{O}_S(C), e] : C^2 = 2g - 2, \operatorname{Pic}(S) \supset \mathbb{Z} \langle R_1, \dots, R_8, C \rangle, \}$$

$$R_i^2 = -2, \ R_i \cdot R_j = 0 \text{ for } i \neq j, \ C \cdot R_i = 0, \ 2e = \mathcal{O}_C(R_1 + \dots + R_8) \}.$$

 \mathbf{P}^{g} -bundle over \mathcal{N}_{g}

$$\mathcal{PN}_g := \{ ([S, C, e]) : [S, \mathcal{O}_S(C)] \in \mathcal{N}_g, C \subset S \}.$$

There exists map $\chi_g : \mathcal{PN}_g \to \mathcal{R}_g$

$$[S, C, e] \stackrel{\chi}{\mapsto} [C, e \otimes \mathcal{O}_C] \in \mathcal{R}_g.$$

Dimension count: dim $(N_g) = 11 (= 19 - \#\{R_j\}_{j=1}^8); \text{ dim}(\mathcal{PN}_g) = 11 + g$ Question When is χ_g dominant? A necessary condition is that

$$11+g\geq 3g-3\Leftrightarrow g\leq 7.$$

HU Berlin

Gavril Farkas

 \mathbf{P}^{g} -bundle over \mathcal{N}_{g}

$$\mathcal{PN}_g := \{ ([S, C, e]) : [S, \mathcal{O}_S(C)] \in \mathcal{N}_g, C \subset S \}.$$

There exists map $\chi_g : \mathcal{PN}_g \to \mathcal{R}_g$

$$[S, C, e] \stackrel{\chi}{\mapsto} [C, e \otimes \mathcal{O}_C] \in \mathcal{R}_g.$$

Dimension count: $\dim(\mathcal{N}_g) = 11(=19 - \#\{R_j\}_{j=1}^8); \dim(\mathcal{PN}_g) = 11 + g.$ Question

When is χ_g dominant? A necessary condition is that

$$11+g\geq 3g-3\Leftrightarrow g\leq 7.$$

イロト イヨト イヨト イヨト

3

HU Berlin

Gavril Farkas

 \mathbf{P}^{g} -bundle over \mathcal{N}_{g}

$$\mathcal{PN}_g := \{ ([S, C, e]) : [S, \mathcal{O}_S(C)] \in \mathcal{N}_g, C \subset S \}.$$

There exists map $\chi_g : \mathcal{PN}_g \to \mathcal{R}_g$

$$[S, C, e] \stackrel{\chi}{\mapsto} [C, e \otimes \mathcal{O}_C] \in \mathcal{R}_g.$$

Dimension count: $\dim(\mathcal{N}_g) = 11 (= 19 - \#\{R_j\}_{j=1}^8); \dim(\mathcal{PN}_g) = 11 + g.$ Question When is χ_g dominant? A necessary condition is that

$$11+g\geq 3g-3\Leftrightarrow g\leq 7.$$

イロト イヨト イヨト イヨト

э

HU Berlin

(F, Verra 2009) The general Prym curve $[C, \eta] \in \mathcal{R}_g$ lies on a Nikulin surface if and only if $g \leq 7, g \neq 6$.

Remark

In genus 6: the locus $\operatorname{Im}(\chi_6) \subset \mathcal{R}_6$ is a divisor, namely the ramification locus of the Prym map $\mathfrak{Pr} : \mathcal{R}_6 \to \mathcal{A}_5$. The general Prym curve $[\mathcal{C}, \eta] \in \mathcal{R}_6$, lies instead on an Enriques surface!

Theorem

(Mukai) The general $[C] \in \mathcal{M}_g$ lies on a K3 surface if and only if $g \leq 11$ and $g \neq 10$. In genus 10, the locus

 $\mathcal{K}_{10} := \{ [C] \in \mathcal{M}_{10} : C \text{ lies on a K3 surface} \}$

is an irreducible divisor on \mathcal{M}_{10} .

< ロ > < 国 > < 国 > < 国 > < 国

(F, Verra 2009) The general Prym curve $[C, \eta] \in \mathcal{R}_g$ lies on a Nikulin surface if and only if $g \leq 7, g \neq 6$.

Remark

In genus 6: the locus $\operatorname{Im}(\chi_6) \subset \mathcal{R}_6$ is a divisor, namely the ramification locus of the Prym map $\mathfrak{Pr} : \mathcal{R}_6 \to \mathcal{A}_5$. The general Prym curve $[\mathcal{C}, \eta] \in \mathcal{R}_6$, lies instead on an Enriques surface!

Theorem

(Mukai) The general $[C] \in M_g$ lies on a K3 surface if and only if $g \le 11$ and $g \ne 10$. In genus 10, the locus

 $\mathcal{K}_{10} := \{ [C] \in \mathcal{M}_{10} : C \text{ lies on a K3 surface} \}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HU Berlin

is an irreducible divisor on \mathcal{M}_{10} .

(F, Verra 2009) The general Prym curve $[C, \eta] \in \mathcal{R}_g$ lies on a Nikulin surface if and only if $g \leq 7, g \neq 6$.

Remark

In genus 6: the locus $\operatorname{Im}(\chi_6) \subset \mathcal{R}_6$ is a divisor, namely the ramification locus of the Prym map $\mathfrak{Pr} : \mathcal{R}_6 \to \mathcal{A}_5$. The general Prym curve $[\mathcal{C}, \eta] \in \mathcal{R}_6$, lies instead on an Enriques surface!

Theorem

(Mukai) The general $[C] \in M_g$ lies on a K3 surface if and only if $g \le 11$ and $g \ne 10$. In genus 10, the locus

$$\mathcal{K}_{10} := \{ [C] \in \mathcal{M}_{10} : C \text{ lies on a } K3 \text{ surface} \}$$

is an irreducible divisor on \mathcal{M}_{10} .

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_{g}^{+}$ is uniruled for $g \leq 7$.

Sketch of proof: Start with $[C, \eta] \in S_g^+$. Choose $e_C \in \operatorname{Pic}^0(C)[2]$ such that $\eta \otimes e_C = \mathcal{O}_C(x_1 + \cdots + x_{g-1})$ is an odd theta-characteristic. Let

$$(\mathcal{C},\eta_{\mathcal{C}})\subset (\mathcal{S},e)\subset \mathbf{P}^{g}$$

be a Nikulin extension of *C*. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_1, \ldots, x_{g-1} :

$$\{H_t\}_{t\in \mathbf{P}^1} := |\mathcal{I}_{\sum_{i=1}^{g-1} x_i/S}(C)|$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

$$\left\{ \left[C_t := H_t \cap S, \ e_{C_t} \otimes \mathcal{O}_{C_t}(x_1 + \dots + x_{g-1}) \right] \right\}_{t \in \mathbf{P}^1}.$$

Note that each section C_t will be tangent to H_t along the fixed divisor $x_1 + \cdots + x_{g-1}$. So $\overline{\mathcal{S}}_g^+$ is uniruled.

Gavril Farkas

< ロ > < 国 > < 国 > < 国 > < 国

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_g^+$ is uniruled for $g \leq 7$. Sketch of proof: Start with $[C, \eta] \in \mathcal{S}_g^+$. Choose $e_C \in \operatorname{Pic}^0(C)[2]$ such that $\eta \otimes e_C = \mathcal{O}_C(x_1 + \cdots + x_{g-1})$ is an odd theta-characteristic. Let

$$(\mathcal{C},\eta_{\mathcal{C}})\subset (\mathcal{S},e)\subset \mathsf{P}^{g}$$

be a Nikulin extension of *C*. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_{1}, \ldots, x_{g-1} :

$$\{H_t\}_{t\in \mathbf{P}^1} := |\mathcal{I}_{\sum_{i=1}^{g-1} x_i/S}(C)|$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

$$\left\{ \left[C_t := H_t \cap S, \ e_{C_t} \otimes \mathcal{O}_{C_t}(x_1 + \dots + x_{g-1}) \right] \right\}_{t \in \mathbf{P}^1}.$$

Note that each section C_t will be tangent to H_t along the fixed divisor $x_1 + \cdots + x_{g-1}$. So $\overline{\mathcal{S}}_g^+$ is uniruled.

< ロ > < 国 > < 国 > < 国 > < 国

HU Berlin

Gavril Farkas

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_g^+$ is uniruled for $g \leq 7$. Sketch of proof: Start with $[C, \eta] \in \mathcal{S}_g^+$. Choose $e_C \in \operatorname{Pic}^0(C)[2]$ such that $\eta \otimes e_C = \mathcal{O}_C(x_1 + \cdots + x_{g-1})$ is an odd theta-characteristic. Let

$$(\mathcal{C},\eta_{\mathcal{C}})\subset (\mathcal{S},e)\subset \mathsf{P}^{g}$$

be a Nikulin extension of *C*. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_1, \ldots, x_{g-1} :

$$\{H_t\}_{t\in \mathbf{P}^1} := |\mathcal{I}_{\sum_{i=1}^{g-1} x_i/S}(C)|$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

$$\left\{\left[C_t:=H_t\cap S, \ e_{C_t}\otimes \mathcal{O}_{C_t}(x_1+\cdots+x_{g-1})\right]\right\}_{t\in \mathbf{P}^1}.$$

Note that each section C_t will be tangent to H_t along the fixed divisor $x_1 + \cdots + x_{g-1}$. So $\overline{\mathcal{S}}_g^+$ is uniruled.

HU Berlin

Gavril Farkas

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_g^+$ is uniruled for $g \leq 7$. Sketch of proof: Start with $[C, \eta] \in \mathcal{S}_g^+$. Choose $e_C \in \operatorname{Pic}^0(C)[2]$ such that $\eta \otimes e_C = \mathcal{O}_C(x_1 + \cdots + x_{g-1})$ is an odd theta-characteristic. Let

$$(\mathcal{C},\eta_{\mathcal{C}})\subset (\mathcal{S},e)\subset \mathsf{P}^{g}$$

be a Nikulin extension of *C*. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_1, \ldots, x_{g-1} :

$$\{H_t\}_{t\in \mathbf{P}^1} := |\mathcal{I}_{\sum_{i=1}^{g-1} x_i/S}(C)|$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

$$\left\{\left[C_t := H_t \cap S, \ e_{C_t} \otimes \mathcal{O}_{C_t}(x_1 + \dots + x_{g-1})\right]\right\}_{t \in \mathbf{P}^1}.$$

Note that each section C_t will be tangent to H_t along the fixed divisor $x_1 + \cdots + x_{g-1}$. So $\overline{\mathcal{S}}_g^+$ is uniruled.

Gavril Farkas

The birational geometry of moduli spaces of even spin curves

・ロン ・四 ・ ・ ヨン