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A spin curve of genus g is a pair (C , η), with [C ] ∈Mg and
η ∈ Picg−1(C ) with η⊗2 = KC a theta characteristic.

Sg := {[C , η]} moduli space of spin curves of genus g .

There is an étale covering π : Sg →Mg , π([C , η]) := [C ].

Spin curves come in 2 types, odd and even: Sg = S−g
∐
S+

g ,

S+
g := {[C , η] ∈ Sg : h0(C , η) ≡ 0 mod 2}

and
S−g =:= {[C , η] ∈ Sg : h0(C , η) ≡ 1 mod 2}.

deg(S+
g /Mg ) = 2g−1(2g + 1) deg(S−g /Mg ) = 2g−1(2g − 1).
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What sort of varieties are S−g and S+
g ?

Theorem
(Farkas, Verra 2010)

1. The compactified moduli space S−g of odd spin curves is of general
type for g ≥ 12.

2. S−g is uniruled for g ≤ 11 (unirational for g ≤ 9).

Theorem
(Farkas 2009) S+

g is of general type for g > 8.

Theorem
(Farkas, Verra 2009)

1. S+
g is uniruled for g < 8 (parametrization via Nikulin surfaces).

2. κ(S+
8 ) = 0; The Mukai model of S+

8 is Calabi-Yau of dimension 21.
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Remark
1. For 8 ≤ g ≤ 11: S−g and S+

g have different Kodaira dimension!

2. κ(Mg ) unknown for 17 ≤ g ≤ 21; κ(A6) unknown.

Sg −−−−→ Sgyπ yπ
Mg −−−−→ Mg

Requirements for a compactification of Sg :

I Sg should be modular (i.e. represent a DM stack), have good
singularities.

I π : Sg →Mg should be a finite branched covering.

Solution: Cornalba compactification using stable spin curves.
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A compactification of Sg

Definition
A stable spin curve of genus g is a triple (X , η, β), where:

I X is a quasi-stable with pa(X ) = g .

I η ∈ Picg−1(X ) is a line bundle such that ηE = OE (1), for every
rational component E ⊂ X with |E ∩ X − E | = 2.

I β : η⊗2 → ωX is a sheaf-homomorphism such that βZ 6= 0, for every
non-exceptional component Z ⊂ X .

Sg is the coarse moduli space associated to the stack of spin curves.
There is a ramified map π : Sg →Mg given by π([X , η, β]) = [st(X )].

Example
If [Cxy := C/x ∼ y ] ∈ ∆0 ⊂Mg , with [C , x , y ] ∈Mg−1,2, describe
points [X , η, β] ∈ π−1

(
[Cxy ]

)
:
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Two types of spin curves over Cxy :

I Spin curves corresponding to locally free sheaves on X = Cxy :

[Cxy , ηC ∈ Picg−1(C ), η⊗2
C = KC (x + y)] ∈ S+

g .

I Those corresponding to torsion free sheaves on Cxy ; ”blow-up” the
node, get X := C ∪x,y E , where E ∼= P1.

[C ∪x,y E , ηE = OE (1), η⊗2
C = KC ] ∈ S+

g .

Denote the closure in S+
g of these loci by A0 and B0 respectively. Set

α0 := [A0], β0 := [B0] ∈ Pic(S+
g ).

Gavril Farkas HU Berlin

The birational geometry of moduli spaces of even spin curves



Two types of spin curves over Cxy :

I Spin curves corresponding to locally free sheaves on X = Cxy :

[Cxy , ηC ∈ Picg−1(C ), η⊗2
C = KC (x + y)] ∈ S+

g .

I Those corresponding to torsion free sheaves on Cxy ; ”blow-up” the
node, get X := C ∪x,y E , where E ∼= P1.

[C ∪x,y E , ηE = OE (1), η⊗2
C = KC ] ∈ S+

g .

Denote the closure in S+
g of these loci by A0 and B0 respectively. Set

α0 := [A0], β0 := [B0] ∈ Pic(S+
g ).

Gavril Farkas HU Berlin

The birational geometry of moduli spaces of even spin curves



Two types of spin curves over Cxy :

I Spin curves corresponding to locally free sheaves on X = Cxy :

[Cxy , ηC ∈ Picg−1(C ), η⊗2
C = KC (x + y)] ∈ S+

g .

I Those corresponding to torsion free sheaves on Cxy ; ”blow-up” the
node, get X := C ∪x,y E , where E ∼= P1.

[C ∪x,y E , ηE = OE (1), η⊗2
C = KC ] ∈ S+

g .

Denote the closure in S+
g of these loci by A0 and B0 respectively. Set

α0 := [A0], β0 := [B0] ∈ Pic(S+
g ).

Gavril Farkas HU Berlin

The birational geometry of moduli spaces of even spin curves



To summarize:
1. π∗(δ0) = α0 + 2β0.
2. B0 is the ramification divisor of π.

E

C

x
y

C

B0
A0

xy
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The canonical class of K+
Sg

The Hurwitz formula applied to the branched covering π : S+
g →Mg :

K+
Sg

= π∗(KMg
) + β0 ≡ 13λ− 2α0 − 3β0 − · · · ∈ Pic(S+

g ).

Since singularities of S+
g impose no adjoint conditions (K. Ludwig), S+

g is
of general type precisely when KS+

g
is big. To produce pluricanonical

forms, we construct effective divisors D ∈ Eff(S+
g ), such that

KS+
g

= aλ+ b[D] + Q≥0 · (boundary divisors),

where a > 0 and b ≥ 0.
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Effective divisors on S+
g

The theta-null divisor

Θnull := {[C , η] ∈ S+
g : h0(C , η) ≥ 2}

[C , η] ∈ Θnull ⇔ ∃Q ∈ H0(IC/Pg−1(2)) with rk(Q) = 3,C ∩Sing(Q) = ∅.

Theorem
The class of the closure of Θnull inside S+

g equals:

Θnull ≡
λ

4
− α0

16
−

[g/2]∑
i=1

βi

2
∈ Pic(S+

g ).

Remark
Θnull has very small slope (good!) but coefficient of β0 is 0 (bad!). Thus
Θnull alone will not suffice, to conclude that KS+

g
is big.
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Brill-Noether divisors
Fix integers r , d ≥ 1 such that ρ(g , r , d) = −1. Set

Mr
g ,d := {[C ] ∈Mg : C has a gr

d}.

Theorem
When ρ(g , r , d) = −1,the locus Mr

g ,d is an irreducible divisor in Mg .

Moreover, the class of its closure in Mg is:

Mr
g ,d = cg ,r ,d

(
(g + 3)λ− g + 1

6
δ0 −

[g/2]∑
i=1

i(g − i)δi
)
.

Form a linear combination on S+
g : (KS+

g
≡ 13λ− 2α0 − 3β0 − · · · )

a · π∗(Mr
g,d) + 8 ·Θnull ≡

11g + 29

g + 1
λ− 2α0 − 3β0 − · · · .
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S+
g is a variety of general type whenever

11g + 29

g + 1
< 13⇐⇒ g > 8.

For g = 8, the argument above shows that κ(S+
8 ) ≥ 0; ∃a, ai , bi > 0,

KS+
8
≡ a · π∗(M2

8,7) + 8 ·Θnull +
4∑

i=1

(
ai · αi + bi · βi

)
,

where M2
8,7 ⊂M8 is the irreducible locus of plane septics, and

αi , βi ⊂ S
+
g correspond to loci of curves of compact type.

Goal: Show that κ(S+
8 ) = 0, i.e. this sum of divisors is rigid on S+

8 . In

so, S+
8 would be the first example of a moduli space of intermediate

Kodaira dimension.
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I Each component of KS+
8

is a uniruled, rigid, extremal divisor on S+
8 .

I Construct a covering curve R ⊂ Θnull such that

R · π∗(M2
8,7) = 0, R · αi = R · βi = 0 for i ≥ 1, R ·Θnull < 0.

Then |nKS+
8
| = 8n ·Θnull + |n(KS+

8
− 8Θnull)|, and one repeats the

procedure and removes π∗(M2
8,7) from the canonical system, then the

boundary divisors. The most difficult step is the removal of Θnull.

Mukai’s model of M8: Fix V = C6 and

G := G (2,V ) ↪→ P(∧2V ) = P14

the Grassmannian of lines in P5. Note that dim(G) = 8,KG = OG(−6),
and that curve linear sections of G are canonical curves of genus 8.
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Mukai model of M8

M8 := G
(
8,∧2V

)ss
//SL(V )

There is a birational map φ :M8 99K M8, given by φ−1(H) := [G ∩ H],
for a 7-plane H ⊂ P14. Note that ρ(M8) = 1 (whereas ρ(M8) = 6), thus
Exc(φ) should have 5 irreducible components.

Theorem
The morphism φ contracts the boundary divisors ∆1, . . . ,∆4 ⊂M8.

Furthermore, φ blows the septic locus M2
8,7 down to a point.

Let [C , η] ∈ Θnull, and QC ∈ H0(IC/P7(2)) rank 3 quadric inducing η.
Restriction induces an isomorphism at the level of quadrics:

resC : H0
(
P14, IG/P14(2)

) ∼=−→ H0
(
P7, IC/P7(2)

)
.

Let QG ∈ H0(IG/P14(2)) be the lift of the rank 3 quadric QC .
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There is a P6 of extensions of the canonical curve C by a K 3 surface:

C −−−−→ S −−−−→ Gy y y
P7 −−−−→ P8 −−−−→ P14

For each such extension, QC lifts to a quadric QS ∈ H0(P8, IS/P8(2)).

rk(QS) ≤ 2 + rk(QC ) = 5.

Proposition
There exists a K 3 extension C ⊂ S ⊂ G ⊂ P14 with rk(QS) = 4.

One has a finite covering f : S → Q0 := P1 × P1 ↪→ P3. The two
projections induce elliptic pencils |E1|, |E2| on S (thus E 2

1 = E 2
2 = 0), and

C ≡ E1 + E2. Since g(C ) = 8, it follows E1 · E2 = deg(f ) = 7.
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A covering family for Θnull: f : S
7:1→ Q0

If l0 ⊂ P3 is a general line, then R is induced by planes through l0:

R := f ∗(planes through l0) ⊂ S+
8 .

E 

E2

1

l
0

Q 0

l
1 l2

m1

m

= f   (m  )

2

-1
1

= f -1(l  )1
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The numerical characters of the spin family R ⊂ S+
8 :

I R · λ = π∗(R) · λ = g + 1 = 9.

I R · (α0 + 2β0) = π∗(R) · δ0 = 6(g + 3) = 66 (number of singular
fibres in a pencil of genus g curves on a K 3 surface).

The pencil R ⊂ S+
8 contains two singular fibres consisting each of two

elliptic curves meeting in 7 points; these correspond to the planes in P3

containing the rulings through the points l0 ∩ Q0. Each of these counts
with multiplicity 7/2 (the division by 2 because of the branching of β0).
Therefore

R · β0 =
7

2
+

7

2
= 7

and then R · α0 = 52.

R ·Θnull = R ·
(λ

4
− α0

16

)
=

9

4
− 52

16
= −1 < 0.

Conclusion: κ(S+
8 ) = 0.
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Nikulin surfaces and S+
g

Given a K 3 surface S and a collection {Rj}Nj=1 of disjoint rational curves

on S , Nikulin asked in 1975, when is there a 2 : 1 cover S̃ → S branched
precisely along

⋃N
j=1 Rj? Equivalently, ∃e ∈ Pic(S), such that

2e = OS(R1 + · · ·+ RN).

Answer:

1. N = 16 and S̃ is birational to an abelian variety: Kummer surface.

2. N = 8 and S̃ is again a K 3 surface: Nikulin surface

We introduce several moduli spaces: the Prym moduli space

Rg := {[C , η] : [C ] ∈Mg , η ∈ Pic0(C ), η⊗2 = OC}.

Moduli space of Nikulin surfaces

Ng := {[S ,OS(C ), e] : C 2 = 2g − 2, Pic(S) ⊃ Z〈R1, . . . ,R8,C 〉,

R2
i = −2, Ri · Rj = 0 for i 6= j , C · Ri = 0, 2e = OC (R1 + · · ·+ R8)}.
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Pg -bundle over Ng

PN g := {
(
[S ,C , e]

)
: [S ,OS(C )] ∈ Ng ,C ⊂ S}.

There exists map χg : PN g → Rg

[S ,C , e]
χ7→ [C , e ⊗OC ] ∈ Rg .

Dimension count:
dim(Ng ) = 11

(
= 19−#{Rj}8j=1

)
; dim(PN g ) = 11 + g .

Question
When is χg dominant? A necessary condition is that

11 + g ≥ 3g − 3⇔ g ≤ 7.
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Theorem
(F, Verra 2009) The general Prym curve [C , η] ∈ Rg lies on a Nikulin
surface if and only if g ≤ 7, g 6= 6.

Remark
In genus 6: the locus Im(χ6) ⊂ R6 is a divisor, namely the ramification
locus of the Prym map Pr : R6 → A5. The general Prym curve
[C , η] ∈ R6, lies instead on an Enriques surface!

Theorem
(Mukai) The general [C ] ∈Mg lies on a K 3 surface if and only if g ≤ 11
and g 6= 10. In genus 10, the locus

K10 := {[C ] ∈M10 : C lies on a K 3 surface}

is an irreducible divisor on M10.
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Theorem
(F, Verra 2010) The even spin moduli space S+

g is uniruled for g ≤ 7.

Sketch of proof: Start with [C , η] ∈ S+
g . Choose eC ∈ Pic0(C )[2] such

that η ⊗ eC = OC (x1 + · · ·+ xg−1) is an odd theta-characteristic.
Let

(C , ηC ) ⊂ (S , e) ⊂ Pg

be a Nikulin extension of C . Consider the pencil of hyperplanes in Pg

through the points x1, . . . , xg−1:

{Ht}t∈P1 := |I∑g−1
i=1 xi/S

(C )|

induces a rational covering curve in S+
g :{

[Ct := Ht ∩ S , eCt ⊗OCt (x1 + · · ·+ xg−1)]
}

t∈P1 .

Note that each section Ct will be tangent to Ht along the fixed divisor

x1 + · · ·+ xg−1. So S+
g is uniruled.

Gavril Farkas HU Berlin

The birational geometry of moduli spaces of even spin curves



Theorem
(F, Verra 2010) The even spin moduli space S+

g is uniruled for g ≤ 7.

Sketch of proof: Start with [C , η] ∈ S+
g . Choose eC ∈ Pic0(C )[2] such

that η ⊗ eC = OC (x1 + · · ·+ xg−1) is an odd theta-characteristic.
Let

(C , ηC ) ⊂ (S , e) ⊂ Pg

be a Nikulin extension of C . Consider the pencil of hyperplanes in Pg

through the points x1, . . . , xg−1:

{Ht}t∈P1 := |I∑g−1
i=1 xi/S

(C )|

induces a rational covering curve in S+
g :{

[Ct := Ht ∩ S , eCt ⊗OCt (x1 + · · ·+ xg−1)]
}

t∈P1 .

Note that each section Ct will be tangent to Ht along the fixed divisor

x1 + · · ·+ xg−1. So S+
g is uniruled.

Gavril Farkas HU Berlin

The birational geometry of moduli spaces of even spin curves



Theorem
(F, Verra 2010) The even spin moduli space S+

g is uniruled for g ≤ 7.

Sketch of proof: Start with [C , η] ∈ S+
g . Choose eC ∈ Pic0(C )[2] such

that η ⊗ eC = OC (x1 + · · ·+ xg−1) is an odd theta-characteristic.
Let

(C , ηC ) ⊂ (S , e) ⊂ Pg

be a Nikulin extension of C . Consider the pencil of hyperplanes in Pg

through the points x1, . . . , xg−1:

{Ht}t∈P1 := |I∑g−1
i=1 xi/S

(C )|

induces a rational covering curve in S+
g :{

[Ct := Ht ∩ S , eCt ⊗OCt (x1 + · · ·+ xg−1)]
}

t∈P1 .

Note that each section Ct will be tangent to Ht along the fixed divisor

x1 + · · ·+ xg−1. So S+
g is uniruled.

Gavril Farkas HU Berlin

The birational geometry of moduli spaces of even spin curves



Theorem
(F, Verra 2010) The even spin moduli space S+

g is uniruled for g ≤ 7.

Sketch of proof: Start with [C , η] ∈ S+
g . Choose eC ∈ Pic0(C )[2] such

that η ⊗ eC = OC (x1 + · · ·+ xg−1) is an odd theta-characteristic.
Let

(C , ηC ) ⊂ (S , e) ⊂ Pg

be a Nikulin extension of C . Consider the pencil of hyperplanes in Pg

through the points x1, . . . , xg−1:

{Ht}t∈P1 := |I∑g−1
i=1 xi/S

(C )|

induces a rational covering curve in S+
g :{

[Ct := Ht ∩ S , eCt ⊗OCt (x1 + · · ·+ xg−1)]
}

t∈P1 .

Note that each section Ct will be tangent to Ht along the fixed divisor

x1 + · · ·+ xg−1. So S+
g is uniruled.

Gavril Farkas HU Berlin

The birational geometry of moduli spaces of even spin curves


