The birational geometry of moduli spaces of even spin curves

Gavril Farkas
Humboldt Universität zu Berlin

September 8, 2010

A spin curve of genus g is a pair (C, η), with $[C] \in \mathcal{M}_{g}$ and $\eta \in \operatorname{Pic}^{g-1}(C)$ with $\eta^{\otimes 2}=K_{C}$ a theta characteristic.

$$
\mathcal{S}_{g}:=\{[C, \eta]\} \text { moduli space of spin curves of genus } g \text {. }
$$

There is an étale covering $\pi: \mathcal{S}_{g} \rightarrow \mathcal{M}_{g}, \quad \pi([C, \eta]):=[C]$.
Spin curves come in 2 types, odd and even: $\mathcal{S}_{g}=\mathcal{S}_{g}^{-} \amalg \mathcal{S}_{g}^{+}$,

$$
\mathcal{S}_{g}^{+}:=\left\{[C, \eta] \in \mathcal{S}_{g}: h^{0}(C, \eta) \equiv 0 \bmod 2\right\}
$$

and

$$
\mathcal{S}_{g}^{-}=:=\left\{[C, \eta] \in \mathcal{S}_{g}: h^{0}(C, \eta) \equiv 1 \bmod 2\right\} .
$$

A spin curve of genus g is a pair (C, η), with $[C] \in \mathcal{M}_{g}$ and $\eta \in \operatorname{Pic}^{g-1}(C)$ with $\eta^{\otimes 2}=K_{C}$ a theta characteristic.

$$
\mathcal{S}_{g}:=\{[C, \eta]\} \text { moduli space of spin curves of genus } g \text {. }
$$

There is an étale covering $\pi: \mathcal{S}_{g} \rightarrow \mathcal{M}_{g}, \quad \pi([C, \eta]):=[C]$.
Spin curves come in 2 types, odd and even: $\mathcal{S}_{g}=\mathcal{S}_{g}^{-} \amalg \mathcal{S}_{g}^{+}$,

$$
\mathcal{S}_{g}^{+}:=\left\{[C, \eta] \in \mathcal{S}_{g}: h^{0}(C, \eta) \equiv 0 \bmod 2\right\}
$$

and

$$
\mathcal{S}_{g}^{-}=:=\left\{[C, \eta] \in \mathcal{S}_{g}: h^{0}(C, \eta) \equiv 1 \bmod 2\right\} .
$$

$\operatorname{deg}\left(\mathcal{S}_{g}^{+} / \mathcal{M}_{g}\right)=2^{g-1}\left(2^{g}+1\right) \operatorname{deg}\left(\mathcal{S}_{g}^{-} / \mathcal{M}_{g}\right)=2^{g-1}\left(2^{g}-1\right)$.

A spin curve of genus g is a pair (C, η), with $[C] \in \mathcal{M}_{g}$ and $\eta \in \operatorname{Pic}^{g-1}(C)$ with $\eta^{\otimes 2}=K_{C}$ a theta characteristic.

$$
\mathcal{S}_{g}:=\{[C, \eta]\} \text { moduli space of spin curves of genus } g .
$$

There is an étale covering $\pi: \mathcal{S}_{g} \rightarrow \mathcal{M}_{g}, \quad \pi([C, \eta]):=[C]$.
Spin curves come in 2 types, odd and even: $\mathcal{S}_{g}=\mathcal{S}_{g}^{-} \amalg \mathcal{S}_{g}^{+}$,

$$
\mathcal{S}_{g}^{+}:=\left\{[C, \eta] \in \mathcal{S}_{g}: h^{0}(C, \eta) \equiv 0 \bmod 2\right\}
$$

and

$$
\begin{gathered}
\mathcal{S}_{g}^{-}=:=\left\{[C, \eta] \in \mathcal{S}_{g}: h^{0}(C, \eta) \equiv 1 \bmod 2\right\} \\
\operatorname{deg}\left(\mathcal{S}_{g}^{+} / \mathcal{M}_{g}\right)=2^{g-1}\left(2^{g}+1\right) \operatorname{deg}\left(\mathcal{S}_{g}^{-} / \mathcal{M}_{g}\right)=2^{g-1}\left(2^{g}-1\right)
\end{gathered}
$$

What sort of varieties are \mathcal{S}_{g}^{-}and \mathcal{S}_{g}^{+}?

```
Theorem
(Farkas, Verra 2010)
    1. The compactified moduli space }\mp@subsup{\overline{S}}{g}{}\mathrm{ of odd spin curves is of general
        type for g \geq 12.
    2. }\mp@subsup{\overline{\mathcal{S}}}{g}{-}\mathrm{ is uniruled for g}\leq11\mathrm{ (unirational for g}\leq9\mathrm{ ).
```

Theorem
(Farkas 2009) \bar{S}_{g} is of general type for $g>8$.
Theorem
(Farkas, Verra 2009)
1. $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g<8$ (parametrization via Nikulin surfaces).
2. $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$; The Mukai model of $\overline{\mathcal{S}}_{8}^{+}$is Calabi-Yau of dimension 21.

What sort of varieties are \mathcal{S}_{g}^{-}and \mathcal{S}_{g}^{+}?
Theorem
(Farkas, Verra 2010)

1. The compactified moduli space $\overline{\mathcal{S}}_{g}^{-}$of odd spin curves is of general type for $g \geq 12$.
2. $\overline{\mathcal{S}}_{g}^{-}$is uniruled for $g \leq 11$ (unirational for $g \leq 9$).

Theorem
(Farkas 2009) $\overline{\mathcal{S}}_{g}^{+}$is of general type for $g>8$.
Theorem
(Farkas, Verra 2009)

1. $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g<8$ (parametrization via Nikulin surfaces)
2. $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$; The Mukai model of $\overline{\mathcal{S}}_{8}^{+}$is Calabi-Yau of dimension 2 :

What sort of varieties are \mathcal{S}_{g}^{-}and \mathcal{S}_{g}^{+}?
Theorem
(Farkas, Verra 2010)

1. The compactified moduli space $\overline{\mathcal{S}}_{g}^{-}$of odd spin curves is of general type for $g \geq 12$.
2. $\overline{\mathcal{S}}_{g}^{-}$is uniruled for $g \leq 11$ (unirational for $g \leq 9$).

Theorem
(Farkas 2009) $\overline{\mathcal{S}}_{g}^{+}$is of general type for $g>8$.
Theorem
(Farkas, Verra 2009)

1. $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g<8$ (parametrization via Nikulin surfaces).
2. $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$; The Mukai model of $\overline{\mathcal{S}}_{8}^{+}$is Calabi-Yau of dimension 2.

What sort of varieties are \mathcal{S}_{g}^{-}and \mathcal{S}_{g}^{+}?
Theorem
(Farkas, Verra 2010)

1. The compactified moduli space $\overline{\mathcal{S}}_{g}^{-}$of odd spin curves is of general type for $g \geq 12$.
2. $\overline{\mathcal{S}}_{g}^{-}$is uniruled for $g \leq 11$ (unirational for $g \leq 9$).

Theorem
(Farkas 2009) $\overline{\mathcal{S}}_{g}^{+}$is of general type for $g>8$.
Theorem
(Farkas, Verra 2009)

1. $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g<8$ (parametrization via Nikulin surfaces).
2. $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$; The Mukai model of $\overline{\mathcal{S}}_{8}^{+}$is Calabi-Yau of dimension 21.

Remark

1. For $8 \leq g \leq 11$: $\overline{\mathcal{S}}_{g}^{-}$and $\overline{\mathcal{S}}_{g}^{+}$have different Kodaira dimension!
2. $\kappa\left(\overline{\mathcal{M}}_{g}\right)$ unknown for $17 \leq g \leq 21$; $\kappa\left(\mathcal{A}_{6}\right)$ unknown.

Requirements for a compactification of \mathcal{S}_{g} :
$\rightarrow \overline{\mathcal{S}}_{g}$ should be modular (i.e. represent a DM stack), have good singularities.

- $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ should be a finite branched covering.

Solution: Cornalba comnactification using stable spin curves.

Remark

1. For $8 \leq g \leq 11$: $\overline{\mathcal{S}}_{g}^{-}$and $\overline{\mathcal{S}}_{g}^{+}$have different Kodaira dimension!
2. $\kappa\left(\overline{\mathcal{M}}_{g}\right)$ unknown for $17 \leq g \leq 21$; $\kappa\left(\mathcal{A}_{6}\right)$ unknown.

Requirements for a compactification of \mathcal{S}_{g} :

- $\overline{\mathcal{S}}_{\mathrm{g}}$ should be modular (i.e. represent a DM stack), have good singularities.
- $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ should be a finite branched covering.

Solution: Cornalba compactification using stable spin curves.

Remark

1. For $8 \leq g \leq 11$: $\overline{\mathcal{S}}_{g}^{-}$and $\overline{\mathcal{S}}_{g}^{+}$have different Kodaira dimension!
2. $\kappa\left(\overline{\mathcal{M}}_{g}\right)$ unknown for $17 \leq g \leq 21$; $\kappa\left(\mathcal{A}_{6}\right)$ unknown.

Requirements for a compactification of \mathcal{S}_{g} :

- $\overline{\mathcal{S}}_{g}$ should be modular (i.e. represent a DM stack), have good singularities.
- $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ should be a finite branched covering.

Solution: Cornalba compactification using stable spin curves.

A compactification of \mathcal{S}_{g}

Definition

A stable spin curve of genus g is a triple (X, η, β), where:

- X is a quasi-stable with $p_{a}(X)=g$.
- $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle such that $\eta_{E}=\mathcal{O}_{E}(1)$, for every rational component $E \subset X$ with $|E \cap \overline{X-E}|=2$.
- $\beta: \eta^{\otimes 2} \rightarrow \omega_{X}$ is a sheaf-homomorphism such that $\beta_{Z} \neq 0$, for every non-exceptional component $Z \subset X$.
$\overline{\mathcal{S}}_{g}$ is the coarse moduli space associated to the stack of spin curves.
There is a ramified map $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ given by $\pi([X, \eta, \beta])=[$ st $(X)]$.
Example
If $\left[C_{x y}:=C / x \sim y\right] \in \Delta_{0} \subset \bar{M}_{g}$, with $[C, x, y] \in \mathcal{M}_{g-1,2}$, describe
points $[X, \eta, \beta] \in \pi^{-1}\left(\left[C_{x y}\right]\right)$;

A compactification of \mathcal{S}_{g}

Definition

A stable spin curve of genus g is a triple (X, η, β), where:

- X is a quasi-stable with $p_{a}(X)=g$.
- $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle such that $\eta_{E}=\mathcal{O}_{E}(1)$, for every rational component $E \subset X$ with $|E \cap \overline{X-E}|=2$.
- $\beta: \eta^{\otimes 2} \rightarrow \omega_{X}$ is a sheaf-homomorphism such that $\beta_{Z} \neq 0$, for every non-exceptional component $Z \subset X$.
$\overline{\mathcal{S}}_{\mathrm{g}}$ is the coarse moduli space associated to the stack of spin curves. There is a ramified map $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ given by $\pi([X, \eta, \beta])=[\operatorname{st}(X)]$.

A compactification of \mathcal{S}_{g}

Definition

A stable spin curve of genus g is a triple (X, η, β), where:

- X is a quasi-stable with $p_{a}(X)=g$.
- $\eta \in \operatorname{Pic}^{g-1}(X)$ is a line bundle such that $\eta_{E}=\mathcal{O}_{E}(1)$, for every rational component $E \subset X$ with $|E \cap \overline{X-E}|=2$.
- $\beta: \eta^{\otimes 2} \rightarrow \omega_{X}$ is a sheaf-homomorphism such that $\beta_{Z} \neq 0$, for every non-exceptional component $Z \subset X$.
$\overline{\mathcal{S}}_{g}$ is the coarse moduli space associated to the stack of spin curves. There is a ramified map $\pi: \overline{\mathcal{S}}_{g} \rightarrow \overline{\mathcal{M}}_{g}$ given by $\pi([X, \eta, \beta])=[\operatorname{st}(X)]$.
Example
If $\left[C_{x y}:=C / x \sim y\right] \in \Delta_{0} \subset \overline{\mathcal{M}}_{g}$, with $[C, x, y] \in \mathcal{M}_{g-1,2}$, describe points $[X, \eta, \beta] \in \pi^{-1}\left(\left[C_{x y}\right]\right)$:

Two types of spin curves over $C_{x y}$:

- Spin curves corresponding to locally free sheaves on $X=C_{x y}$:

$$
\left[C_{x y}, \eta_{C} \in \operatorname{Pic}^{g-1}(C), \eta_{C}^{\otimes 2}=K_{C}(x+y)\right] \in \overline{\mathcal{S}}_{g}^{+} .
$$

- Those corresponding to torsion free sheaves on $C_{x y}$; "blow-up" the node, get $X:=C \cup_{x, y} E$, where $E \cong \mathbf{P}^{1}$.

$$
\left[C \cup_{x, y} E, \quad \eta_{E}=\mathcal{O}_{E}(1), \eta_{C}^{\otimes 2}=K_{C}\right] \in \overline{\mathcal{S}}_{g}^{+} .
$$

Denote the closure in $\overline{\mathcal{S}}_{g}^{+}$of these loci by A_{0} and B_{0} respectively. Set $\alpha_{0}:=\left[A_{0}\right], \beta_{0}:=\left[B_{0}\right] \in \operatorname{Pic}\left(\bar{S}_{g}^{+}\right)$,

Two types of spin curves over $C_{x y}$:

- Spin curves corresponding to locally free sheaves on $X=C_{x y}$:

$$
\left[C_{x y}, \eta_{C} \in \operatorname{Pic}^{g-1}(C), \eta_{C}^{\otimes 2}=K_{C}(x+y)\right] \in \overline{\mathcal{S}}_{g}^{+} .
$$

- Those corresponding to torsion free sheaves on $C_{x y}$; "blow-up" the node, get $X:=C \cup_{x, y} E$, where $E \cong \mathbf{P}^{1}$.

$$
\left[C \cup_{x, y} E, \quad \eta_{E}=\mathcal{O}_{E}(1), \eta_{C}^{\otimes 2}=K_{C}\right] \in \overline{\mathcal{S}}_{g}^{+} .
$$

Denote the closure in $\overline{\mathcal{S}}_{\mathrm{g}}$ of these loci by A_{0} and B_{0} respectively. Set $\alpha_{0}:=\left[A_{0}\right], \beta_{0}:=\left[B_{0}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)$

Two types of spin curves over $C_{x y}$:

- Spin curves corresponding to locally free sheaves on $X=C_{x y}$:

$$
\left[C_{x y}, \eta_{C} \in \operatorname{Pic}^{g-1}(C), \eta_{C}^{\otimes 2}=K_{C}(x+y)\right] \in \overline{\mathcal{S}}_{g}^{+} .
$$

- Those corresponding to torsion free sheaves on $C_{x y}$; "blow-up" the node, get $X:=C \cup_{x, y} E$, where $E \cong \mathbf{P}^{1}$.

$$
\left[C \cup_{x, y} E, \quad \eta_{E}=\mathcal{O}_{E}(1), \eta_{C}^{\otimes 2}=K_{C}\right] \in \overline{\mathcal{S}}_{g}^{+} .
$$

Denote the closure in $\overline{\mathcal{S}}_{g}^{+}$of these loci by A_{0} and B_{0} respectively. Set

$$
\alpha_{0}:=\left[A_{0}\right], \beta_{0}:=\left[B_{0}\right] \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right) .
$$

To summarize:

1. $\pi^{*}\left(\delta_{0}\right)=\alpha_{0}+2 \beta_{0}$.
2. B_{0} is the ramification divisor of π.

A_{0}

The canonical class of $K_{\bar{S}_{g}}^{+}$

The Hurwitz formula applied to the branched covering $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$:

$$
K_{\overline{\mathcal{S}}_{g}}^{+}=\pi^{*}\left(K_{\overline{\mathcal{M}}_{g}}\right)+\beta_{0} \equiv 13 \lambda-2 \alpha_{0}-3 \beta_{0}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)
$$

Since singularities of $\overline{\mathcal{S}}_{g}^{+}$impose no adjoint conditions (K. Ludwig), $\overline{\mathcal{S}}_{g}^{+}$is of general type precisely when $K_{\overline{\mathcal{S}}_{\alpha}^{+}}$is big. To produce pluricanonical
forms, we construct effective divisors $\mathfrak{D} \in \operatorname{Eff}\left(\overline{\mathcal{S}}_{g}\right)$, such that

$$
K_{\bar{S}_{g}^{+}}=a \lambda+b[\mathfrak{D}]+\mathbb{Q} \geq 0 \cdot(\text { boundary divisors) },
$$

where $a>0$ and $b \geq 0$.

The canonical class of $K_{\overline{\mathcal{S}}_{g}}^{+}$

The Hurwitz formula applied to the branched covering $\pi: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$:

$$
K_{\overline{\mathcal{S}}_{g}}^{+}=\pi^{*}\left(K_{\overline{\mathcal{M}}_{g}}\right)+\beta_{0} \equiv 13 \lambda-2 \alpha_{0}-3 \beta_{0}-\cdots \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right) .
$$

Since singularities of $\overline{\mathcal{S}}_{g}^{+}$impose no adjoint conditions (K. Ludwig), $\overline{\mathcal{S}}_{g}^{+}$is of general type precisely when $K_{\overline{\mathcal{S}}_{g}^{+}}$is big. To produce pluricanonical forms, we construct effective divisors $\mathfrak{D} \in \operatorname{Eff}\left(\overline{\mathcal{S}}_{g}^{+}\right)$, such that

$$
K_{\overline{\mathcal{S}}_{g}^{+}}=a \lambda+b[\mathfrak{D}]+\mathbb{Q} \geq 0 \cdot \text { (boundary divisors), }
$$

where $a>0$ and $b \geq 0$.

Effective divisors on $\overline{\mathcal{S}}_{g}^{+}$

The theta-null divisor

$$
\Theta_{\text {null }}:=\left\{[C, \eta] \in \mathcal{S}_{\mathbf{g}}^{+}: h^{0}(C, \eta) \geq 2\right\}
$$

$[C, \eta] \in \Theta_{\text {null }} \Leftrightarrow \exists Q \in H^{0}\left(I_{C / P^{g-1}}(2)\right)$ with $r k(Q)=3, C \cap \operatorname{Sing}(Q)=\emptyset$.
Theorem
The class of the closure of $\Theta_{\text {null }}$ inside \mathcal{S}_{g} equals:

Remark

$\bar{\Theta}_{\text {null }}$ has very small slope (good!) but coefficient of β_{0} is 0 (bad!). Thus $\bar{\Theta}_{\text {null }}$ alone will not suffice, to conclude that $K_{\bar{S}_{g}^{+}}$is big.

Effective divisors on $\overline{\mathcal{S}}_{g}^{+}$

The theta-null divisor

$$
\begin{gathered}
\Theta_{\text {null }}:=\left\{[C, \eta] \in \mathcal{S}_{g}^{+}: h^{0}(C, \eta) \geq 2\right\} \\
{[C, \eta] \in \Theta_{\text {null }} \Leftrightarrow \exists Q \in H^{0}\left(\mathcal{I}_{C / \mathbf{P}^{g-1}}(2)\right) \text { with } \mathrm{rk}(Q)=3, C \cap \operatorname{Sing}(Q)=\emptyset .}
\end{gathered}
$$

Theorem
The class of the closure of $\Theta_{\text {null }}$ inside $\overline{\mathcal{S}}_{g}^{+}$equals:

> Remark
> $\bar{\Theta}_{\text {null }}$ has very small slope (good!) but coefficient of β_{0} is 0 (bad!). Thus $\bar{\Theta}_{\text {null }}$ alone will not suffice, to conclude that $K_{\bar{S}_{g}^{+}}$is big.

Effective divisors on $\overline{\mathcal{S}}_{g}^{+}$

The theta-null divisor

$$
\Theta_{\text {null }}:=\left\{[C, \eta] \in \mathcal{S}_{g}^{+}: h^{0}(C, \eta) \geq 2\right\}
$$

$[C, \eta] \in \Theta_{\text {null }} \Leftrightarrow \exists Q \in H^{0}\left(\mathcal{I}_{C / \mathbf{P}^{g-1}}(2)\right)$ with $\mathrm{rk}(Q)=3, C \cap \operatorname{Sing}(Q)=\emptyset$.
Theorem
The class of the closure of $\Theta_{\text {null }}$ inside $\overline{\mathcal{S}}_{g}^{+}$equals:

$$
\bar{\Theta}_{\mathrm{null}} \equiv \frac{\lambda}{4}-\frac{\alpha_{0}}{16}-\sum_{i=1}^{[g / 2]} \frac{\beta_{i}}{2} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)
$$

Remark
$\bar{\Theta}_{\text {null }}$ has very small slope (good!) but coefficient of β_{0} is 0 (bad!). Thus $\bar{\theta}_{\text {null }}$ alone will not suffice, to conclude that $K_{S_{S}}$ is big.

Effective divisors on $\overline{\mathcal{S}}_{g}^{+}$

The theta-null divisor

$$
\begin{gathered}
\Theta_{\text {null }}:=\left\{[C, \eta] \in \mathcal{S}_{\mathrm{g}}^{+}: h^{0}(C, \eta) \geq 2\right\} \\
{[C, \eta] \in \Theta_{\text {null }} \Leftrightarrow \exists Q \in H^{0}\left(\mathcal{I}_{C / \mathbf{P}^{g-1}}(2)\right) \text { with } \mathrm{rk}(Q)=3, C \cap \operatorname{Sing}(Q)=\emptyset .}
\end{gathered}
$$

Theorem
The class of the closure of $\Theta_{\text {null }}$ inside $\overline{\mathcal{S}}_{g}^{+}$equals:

$$
\bar{\Theta}_{\text {null }} \equiv \frac{\lambda}{4}-\frac{\alpha_{0}}{16}-\sum_{i=1}^{[g / 2]} \frac{\beta_{i}}{2} \in \operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right)
$$

Remark
$\bar{\Theta}_{\text {null }}$ has very small slope (good!) but coefficient of β_{0} is 0 (bad!). Thus $\bar{\Theta}_{\text {null }}$ alone will not suffice, to conclude that $K_{\overline{\mathcal{S}}_{g}^{+}}$is big.

Brill-Noether divisors

Fix integers $r, d \geq 1$ such that $\rho(g, r, d)=-1$. Set

$$
\mathcal{M}_{g, d}^{r}:=\left\{[C] \in \mathcal{M}_{g}: C \text { has a } \mathfrak{g}_{d}^{r}\right\} .
$$

Theorem
When $\rho(g, r, c)=-1$, the locus $\mathcal{M}_{g, d}^{r}$ is an irreducible divisor in \mathcal{M}_{g}. Moreover, the class of its closure in $\overline{\mathcal{M}}_{\mathrm{g}}$ is:

Form a linear combination on $\overline{\mathcal{S}}_{g}^{+}: \quad\left(K_{\overline{\mathcal{S}}_{g}^{+}} \equiv 13 \lambda-2 \alpha_{0}-3 \beta_{0}-\cdots\right)$

Brill-Noether divisors

Fix integers $r, d \geq 1$ such that $\rho(g, r, d)=-1$. Set

$$
\mathcal{M}_{g, d}^{r}:=\left\{[C] \in \mathcal{M}_{g}: C \text { has a } \mathfrak{g}_{d}^{r}\right\} .
$$

Theorem
When $\rho(g, r, d)=-1$, the locus $\mathcal{M}_{g, d}^{r}$ is an irreducible divisor in \mathcal{M}_{g}. Moreover, the class of its closure in $\overline{\mathcal{M}}_{g}$ is:

$$
\overline{\mathcal{M}}_{g, d}^{r}=c_{g, r, d}\left((g+3) \lambda-\frac{g+1}{6} \delta_{0}-\sum_{i=1}^{[g / 2]} i(g-i) \delta_{i}\right) .
$$

Form a linear combination on $\overline{\mathcal{S}}_{g}^{+}$

Brill-Noether divisors

Fix integers $r, d \geq 1$ such that $\rho(g, r, d)=-1$. Set

$$
\mathcal{M}_{g, d}^{r}:=\left\{[C] \in \mathcal{M}_{g}: C \text { has a } \mathfrak{g}_{d}^{r}\right\} .
$$

Theorem
When $\rho(g, r, d)=-1$, the locus $\mathcal{M}_{g, d}^{r}$ is an irreducible divisor in \mathcal{M}_{g}. Moreover, the class of its closure in $\overline{\mathcal{M}}_{g}$ is:

$$
\overline{\mathcal{M}}_{g, d}^{r}=c_{g, r, d}\left((g+3) \lambda-\frac{g+1}{6} \delta_{0}-\sum_{i=1}^{[g / 2]} i(g-i) \delta_{i}\right) .
$$

Form a linear combination on $\overline{\mathcal{S}}_{g}^{+}: \quad\left(K_{\overline{\mathcal{S}}_{g}^{+}} \equiv 13 \lambda-2 \alpha_{0}-3 \beta_{0}-\cdots\right)$

$$
a \cdot \pi^{*}\left(\overline{\mathcal{M}}_{g, d}^{r}\right)+8 \cdot \bar{\Theta}_{\mathrm{null}} \equiv \frac{11 g+29}{g+1} \lambda-2 \alpha_{0}-3 \beta_{0}-\cdots .
$$

$\overline{\mathcal{S}}_{g}^{+}$is a variety of general type whenever

$$
\frac{11 g+29}{g+1}<13 \Longleftrightarrow g>8
$$

For $g=8$, the argument above shows that $k\left(\overline{\mathcal{S}_{8}}\right) \geq 0 ; \exists a, a_{i}, b_{i}>0$,

where $\overline{\mathcal{M}}_{8,7}^{2} \subset \overline{\mathcal{M}}_{8}$ is the irreducible locus of plane septics, and $\alpha_{i}, \beta_{i} \subset \overline{\mathcal{S}}_{g}^{+}$correspond to loci of curves of compact type.
Goal: Show that $\kappa\left(\bar{S}_{8}^{+}\right)=0$, i.e. this sum of divisors is rigid on $\overline{\mathcal{S}}_{8}^{+}$. In so, $\overline{\mathcal{S}}_{8}^{+}$would be the first example of a moduli space of intermediate Kodaira dimension.
$\overline{\mathcal{S}}_{g}^{+}$is a variety of general type whenever

$$
\frac{11 g+29}{g+1}<13 \Longleftrightarrow g>8
$$

For $g=8$, the argument above shows that $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right) \geq 0 ; \exists a, a_{i}, b_{i}>0$,

$$
K_{\overline{\mathcal{S}}_{8}^{+}} \equiv a \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)+8 \cdot \bar{\Theta}_{\text {null }}+\sum_{i=1}^{4}\left(a_{i} \cdot \alpha_{i}+b_{i} \cdot \beta_{i}\right),
$$

where $\overline{\mathcal{M}}_{8,7}^{2} \subset \overline{\mathcal{M}}_{8}$ is the irreducible locus of plane septics, and $\alpha_{i}, \beta_{i} \subset \overline{\mathcal{S}}_{g}^{+}$correspond to loci of curves of compact type.
Goal: Show that $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$, i.e. this sum of divisors is rigid on $\overline{\mathcal{S}}_{8}^{+}$. In so, $\overline{\mathcal{S}}_{8}^{+}$would be the first example of a moduli space of intermediate Kodaira dimension.
$\overline{\mathcal{S}}_{g}^{+}$is a variety of general type whenever

$$
\frac{11 g+29}{g+1}<13 \Longleftrightarrow g>8
$$

For $g=8$, the argument above shows that $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right) \geq 0 ; \exists a, a_{i}, b_{i}>0$,

$$
K_{\overline{\mathcal{S}}_{8}^{+}} \equiv a \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)+8 \cdot \bar{\Theta}_{\text {null }}+\sum_{i=1}^{4}\left(a_{i} \cdot \alpha_{i}+b_{i} \cdot \beta_{i}\right),
$$

where $\overline{\mathcal{M}}_{8,7}^{2} \subset \overline{\mathcal{M}}_{8}$ is the irreducible locus of plane septics, and $\alpha_{i}, \beta_{i} \subset \overline{\mathcal{S}}_{g}^{+}$correspond to loci of curves of compact type. Goal: Show that $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$, i.e. this sum of divisors is rigid on $\overline{\mathcal{S}}_{8}^{+}$. In so, $\overline{\mathcal{S}}_{8}^{+}$would be the first example of a moduli space of intermediate Kodaira dimension.

- Each component of $K_{\overline{\mathcal{S}}_{8}^{+}}$is a uniruled, rigid, extremal divisor on $\overline{\mathcal{S}}_{8}^{+}$.
- Construct a covering curve $\mathfrak{R} \subset \bar{\Theta}_{\text {null }}$ such that

$$
\mathfrak{R} \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)=0, \mathfrak{R} \cdot \alpha_{i}=\mathfrak{R} \cdot \beta_{i}=0 \text { for } i \geq 1, \mathfrak{R} \cdot \bar{\Theta}_{\text {null }}<0 .
$$

Then $\left|n K_{\bar{S}_{8}^{+}}\right|=8 n \cdot \bar{\Theta}_{\text {null }}+\left|n\left(K_{\bar{S}_{8}^{+}}-8 \bar{\Theta}_{\text {null }}\right)\right|$, and one repeats the
procedure and removes $\pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)$ from the canonical system, then the boundary divisors. The most difficult step is the removal of $\bar{\Theta}_{\text {null }}$.

Mukai's model of \bar{M}_{8} : Fix $V=\mathbb{C}^{6}$ and

$$
\mathbf{G}:=G(2, V) \hookrightarrow \mathbf{P}\left(\wedge^{2} V\right)=\mathbf{P}^{14}
$$

the Grassmannian of lines in \mathbf{P}^{5}. Note that $\operatorname{dim}(\mathbf{G})=8, K_{\mathbf{G}}=\mathcal{O}_{\mathbf{G}}(-6)$, and that curve linear sections of \mathbf{G} are canonical curves of genus 8 .

- Each component of $K_{\overline{\mathcal{S}}_{8}^{+}}$is a uniruled, rigid, extremal divisor on $\overline{\mathcal{S}}_{8}^{+}$.
- Construct a covering curve $\Re \subset \bar{\Theta}_{\text {null }}$ such that

$$
\mathfrak{R} \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)=0, \mathfrak{R} \cdot \alpha_{i}=\mathfrak{R} \cdot \beta_{i}=0 \text { for } i \geq 1, \mathfrak{R} \cdot \bar{\Theta}_{\text {null }}<0 .
$$

Then $\left|n K_{\overline{\mathcal{S}}_{8}^{+}}\right|=8 n \cdot \bar{\Theta}_{\text {null }}+\left|n\left(K_{\overline{\mathcal{S}}_{8}^{+}}-8 \bar{\Theta}_{\text {null }}\right)\right|$, and one repeats the procedure and removes $\pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)$ from the canonical system, then the boundary divisors. The most difficult step is the removal of $\bar{\Theta}_{\text {null }}$.

Mukai's model of \bar{M}_{8} : Fix $V=\mathbb{C}^{6}$ and

the Grassmannian of lines in \mathbf{P}^{5}. Note that $\operatorname{dim}(\mathbf{G})=8, K_{\mathbf{G}}=\mathcal{O}_{\mathbf{G}}(-6)$, and that curve linear sections of \mathbf{G} are canonical curves of genus 8 .

- Each component of $K_{\overline{\mathcal{S}}_{8}^{+}}$is a uniruled, rigid, extremal divisor on $\overline{\mathcal{S}}_{8}^{+}$.
- Construct a covering curve $\mathfrak{R} \subset \bar{\Theta}_{\text {null }}$ such that

$$
\mathfrak{R} \cdot \pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)=0, \mathfrak{R} \cdot \alpha_{i}=\mathfrak{R} \cdot \beta_{i}=0 \text { for } i \geq 1, \mathfrak{R} \cdot \bar{\Theta}_{\text {null }}<0 .
$$

Then $\left|n K_{\overline{\mathcal{S}}_{8}^{+}}\right|=8 n \cdot \bar{\Theta}_{\text {null }}+\left|n\left(K_{\overline{\mathcal{S}}_{8}^{+}}-8 \bar{\Theta}_{\text {null }}\right)\right|$, and one repeats the procedure and removes $\pi^{*}\left(\overline{\mathcal{M}}_{8,7}^{2}\right)$ from the canonical system, then the boundary divisors. The most difficult step is the removal of $\bar{\Theta}_{\text {null }}$.

Mukai's model of $\overline{\mathcal{M}}_{8}$: Fix $V=\mathbb{C}^{6}$ and

$$
\mathbf{G}:=G(2, V) \hookrightarrow \mathbf{P}\left(\wedge^{2} V\right)=\mathbf{P}^{14}
$$

the Grassmannian of lines in \mathbf{P}^{5}. Note that $\operatorname{dim}(\mathbf{G})=8, K_{\mathbf{G}}=\mathcal{O}_{\mathbf{G}}(-6)$, and that curve linear sections of \mathbf{G} are canonical curves of genus 8 .

Mukai model of $\overline{\mathcal{M}}_{8}$

$$
\mathfrak{M}_{8}:=G\left(8, \wedge^{2} V\right)^{s 5} / / S L(V)
$$

There is a birational map $\phi: \overline{\mathcal{M}}_{8} \rightarrow \mathfrak{M}_{8}$, given by $\phi^{-1}(H):=[\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho\left(\mathfrak{M}_{8}\right)=1$ (whereas $\rho\left(\overline{\mathcal{M}}_{8}\right)=6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.
Theorem
The morphism ϕ contracts the boundary divisors $\Delta_{1}, \ldots, \Delta_{4} \subset \overline{\mathcal{M}}_{8}$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^{2}$ down to a point.

Let $[C, \eta] \in \Theta_{\text {null }}$, and $Q_{C} \in H^{0}\left(I_{C / P^{7}}(2)\right)$ rank 3 quadric inducing η.
Restriction induces an isomorphism at the level of quadrics:

$$
\operatorname{res} C: H^{0}\left(P^{14}, I_{G / P^{14}}(2)\right) \stackrel{\left(H^{0}\left(P^{7}, I_{C / P^{7}}(2)\right) .\right.}{ }
$$

Let $Q_{G} \in H^{0}\left(\mathcal{I}_{G / \mathbf{P}^{14}}(2)\right)$ be the lift of the rank 3 quadric Q_{C}

Mukai model of $\overline{\mathcal{M}}_{8}$

$$
\mathfrak{M}_{8}:=G\left(8, \wedge^{2} V\right)^{s 5} / / S L(V)
$$

There is a birational map $\phi: \overline{\mathcal{M}}_{8} \rightarrow \mathfrak{M}_{8}$, given by $\phi^{-1}(H):=[\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho\left(\mathfrak{M}_{8}\right)=1$ (whereas $\rho\left(\overline{\mathcal{M}}_{8}\right)=6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.

Theorem

The morphism ϕ contracts the boundary divisors $\Delta_{1}, \ldots, \Delta_{4} \subset \overline{\mathcal{M}}_{8}$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^{2}$ down to a point.

Let $[C, \eta] \in \Theta_{\text {null }}$, and $Q_{C} \in H^{0}\left(\mathcal{I}_{C / P^{7}}(2)\right)$ rank 3 quadric inducing η. Restriction induces an isomorphism at the level of quadrics:

$$
\operatorname{res} C: H^{0}\left(P^{14}, I_{G / P^{14}}(2)\right) \stackrel{H^{0}\left(P^{7}, I_{C / P^{7}}(2)\right) .}{ }
$$

Let $Q_{\mathrm{G}} \in H^{0}\left(\mathcal{I}_{\mathrm{G} / \mathrm{P}^{14}}(2)\right)$ be the lift of the rank 3 quadric Q_{C}

Mukai model of $\overline{\mathcal{M}}_{8}$

$$
\mathfrak{M}_{8}:=G\left(8, \wedge^{2} V\right)^{s 5} / / S L(V)
$$

There is a birational map $\phi: \overline{\mathcal{M}}_{8} \rightarrow \mathfrak{M}_{8}$, given by $\phi^{-1}(H):=[\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho\left(\mathfrak{M}_{8}\right)=1$ (whereas $\rho\left(\overline{\mathcal{M}}_{8}\right)=6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.

Theorem

The morphism ϕ contracts the boundary divisors $\Delta_{1}, \ldots, \Delta_{4} \subset \overline{\mathcal{M}}_{8}$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^{2}$ down to a point.

Let $[C, \eta] \in \Theta_{\text {null }}$, and $Q_{C} \in H^{0}\left(\mathcal{I}_{C / \mathbf{P}^{7}}(2)\right)$ rank 3 quadric inducing η.
Restriction induces an isomorphism at the level of quadrics:

Let $Q_{G} \in H^{0}\left(\mathcal{I}_{\mathbf{G} / \mathbf{P}^{14}}(2)\right)$ be the lift of the rank 3 quadric Q_{C}

Mukai model of $\overline{\mathcal{M}}_{8}$

$$
\mathfrak{M}_{8}:=G\left(8, \wedge^{2} V\right)^{s 5} / / S L(V)
$$

There is a birational map $\phi: \overline{\mathcal{M}}_{8} \rightarrow \mathfrak{M}_{8}$, given by $\phi^{-1}(H):=[\mathbf{G} \cap H]$, for a 7-plane $H \subset \mathbf{P}^{14}$. Note that $\rho\left(\mathfrak{M}_{8}\right)=1$ (whereas $\rho\left(\overline{\mathcal{M}}_{8}\right)=6$), thus $\operatorname{Exc}(\phi)$ should have 5 irreducible components.

Theorem

The morphism ϕ contracts the boundary divisors $\Delta_{1}, \ldots, \Delta_{4} \subset \overline{\mathcal{M}}_{8}$. Furthermore, ϕ blows the septic locus $\overline{\mathcal{M}}_{8,7}^{2}$ down to a point.

Let $[C, \eta] \in \Theta_{\text {null }}$, and $Q_{C} \in H^{0}\left(\mathcal{I}_{C / \mathbf{P}^{7}}(2)\right)$ rank 3 quadric inducing η. Restriction induces an isomorphism at the level of quadrics:

$$
\operatorname{res}_{C}: H^{0}\left(\mathbf{P}^{14}, \mathcal{I}_{\mathbf{G} / \mathbf{P}^{14}}(2)\right) \stackrel{\cong}{\cong} H^{0}\left(\mathbf{P}^{7}, \mathcal{I}_{C / \mathbf{P}^{7}}(2)\right)
$$

Let $Q_{\mathbf{G}} \in H^{0}\left(\mathcal{I}_{\mathbf{G} / \mathbf{P}^{14}}(2)\right)$ be the lift of the rank 3 quadric Q_{C}.

There is a \mathbf{P}^{6} of extensions of the canonical curve C by a $K 3$ surface:

For each such extension, Q_{C} lifts to a quadric $Q_{S} \in H^{0}\left(P^{8}, I_{S / P^{8}}(2)\right)$. $\mathrm{rk}\left(Q_{S}\right) \leq 2+\mathrm{rk}\left(Q_{C}\right)=5$.

Proposition

There exists a $K 3$ extension $C \subset S \subset G \subset P^{14}$ with $\mathrm{rk}\left(Q_{S}\right)=4$.
One has a finite covering $f: S \rightarrow Q_{0}:=\mathbf{P}^{1} \times \mathbf{P}^{1} \hookrightarrow \mathbf{P}^{3}$. The two
projections induce elliptic pencils $\left|E_{1}\right|,\left|E_{2}\right|$ on S (thus $E_{1}^{2}=E_{2}^{2}=0$), and $C \equiv E_{1}+E_{2}$. Since $g(C)=8$, it follows $E_{1} \cdot E_{2}=\operatorname{deg}(f)=7$.

There is a \mathbf{P}^{6} of extensions of the canonical curve C by a $K 3$ surface:

For each such extension, Q_{C} lifts to a quadric $Q_{S} \in H^{0}\left(\mathbf{P}^{8}, \mathcal{I}_{S / \mathbf{P}^{8}}(2)\right)$.

$$
\operatorname{rk}\left(Q_{S}\right) \leq 2+\operatorname{rk}\left(Q_{C}\right)=5 .
$$

Proposition
There exists a $K 3$ extension $C \subset S \subset G \subset P^{14}$ with $r k\left(Q_{S}\right)=4$.
One has a finite covering $f: S \rightarrow Q_{0}:=\mathbf{P}^{1} \times \mathbf{P}^{1} \hookrightarrow \mathbf{P}^{3}$. The two
projections induce elliptic pencils $\left|E_{1}\right|,\left|E_{2}\right|$ on S (thus $E_{1}^{2}=E_{2}^{2}=0$), and $C \equiv E_{1}+E_{2}$. Since $g(C)=8$, it follows $E_{1} \cdot E_{2}=\operatorname{deg}(f)=7$.

There is a \mathbf{P}^{6} of extensions of the canonical curve C by a $K 3$ surface:

For each such extension, Q_{C} lifts to a quadric $Q_{S} \in H^{0}\left(\mathbf{P}^{8}, \mathcal{I}_{S / \mathbf{P}^{8}}(2)\right)$.

$$
\mathrm{rk}\left(Q_{S}\right) \leq 2+\operatorname{rk}\left(Q_{C}\right)=5 .
$$

Proposition

There exists a $K 3$ extension $C \subset S \subset \mathbf{G} \subset \mathbf{P}^{14}$ with $\operatorname{rk}\left(Q_{S}\right)=4$.
projections induce elliptic pencils $\left|E_{1}\right|,\left|E_{2}\right|$ on S (thus $E_{1}^{2}=E_{2}^{2}=0$), and $C \equiv E_{1}+E_{2}$. Since $g(C)=8$, it follows $E_{1} \cdot E_{2}=\operatorname{deg}(f)=7$.

There is a \mathbf{P}^{6} of extensions of the canonical curve C by a $K 3$ surface:

For each such extension, Q_{C} lifts to a quadric $Q_{S} \in H^{0}\left(\mathbf{P}^{8}, \mathcal{I}_{S / \mathbf{P}^{8}}(2)\right)$.

$$
\mathrm{rk}\left(Q_{S}\right) \leq 2+\mathrm{rk}\left(Q_{C}\right)=5 .
$$

Proposition

There exists a $K 3$ extension $C \subset S \subset \mathbf{G} \subset \mathbf{P}^{14}$ with $\operatorname{rk}\left(Q_{S}\right)=4$.
One has a finite covering $f: S \rightarrow Q_{0}:=\mathbf{P}^{1} \times \mathbf{P}^{1} \hookrightarrow \mathbf{P}^{3}$. The two projections induce elliptic pencils $\left|E_{1}\right|,\left|E_{2}\right|$ on S (thus $E_{1}^{2}=E_{2}^{2}=0$), and $C \equiv E_{1}+E_{2}$. Since $g(C)=8$, it follows $E_{1} \cdot E_{2}=\operatorname{deg}(f)=7$.

A covering family for $\bar{\Theta}_{\text {null }}: \quad f: S \xrightarrow{7.1} Q_{0}$
If $I_{0} \subset \mathbf{P}^{3}$ is a general line, then \mathfrak{R} is induced by planes through I_{0} : $\mathfrak{R}:=f^{*}\left(\right.$ planes through $\left.I_{0}\right) \subset \overline{\mathcal{S}}_{8}^{+}$.

The numerical characters of the spin family $\mathfrak{R} \subset \overline{\mathcal{S}}_{8}^{+}$:

- $\mathfrak{R} \cdot \lambda=\pi_{*}(\mathfrak{R}) \cdot \lambda=g+1=9$.
- $\mathfrak{R} \cdot\left(\alpha_{0}+2 \beta_{0}\right)=\pi_{*}(\Re) \cdot \delta_{0}=6(g+3)=66$ (number of singular fibres in a pencil of genus g curves on a $K 3$ surface).
The pencil $\mathfrak{R} \subset \overline{\mathcal{S}}_{8}^{+}$contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in P^{3} containing the rulings through the points $I_{0} \cap Q_{0}$. Each of these counts with multiplicity $7 / 2$ (the division by 2 because of the branching of β_{0}). Therefore

$$
\mathfrak{R} \cdot \beta_{0}=\frac{7}{2}+\frac{7}{2}=7
$$

and then $\mathfrak{R} \cdot \alpha_{0}=52$.

$$
\Re \cdot \bar{\Theta}_{\text {null }}=\Re \cdot\left(\frac{\lambda}{4}-\frac{\alpha_{0}}{16}\right)=\frac{9}{4}-\frac{52}{16}=-1<0 .
$$

Conclusion: $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$.

The numerical characters of the spin family $\mathfrak{R} \subset \overline{\mathcal{S}}_{8}^{+}$:

- $\mathfrak{R} \cdot \lambda=\pi_{*}(\mathfrak{R}) \cdot \lambda=g+1=9$.
- $\mathfrak{R} \cdot\left(\alpha_{0}+2 \beta_{0}\right)=\pi_{*}(\mathfrak{R}) \cdot \delta_{0}=6(g+3)=66$ (number of singular fibres in a pencil of genus g curves on a $K 3$ surface).
The pencil $\Re \subset \overline{\mathcal{S}_{8}}$ contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in \mathbf{P}^{3} containing the rulings through the points $1_{0} \cap Q_{0}$. Each of these counts with multiplicity $7 / 2$ (the division by 2 because of the branching of β_{0}). Therefore

and then $\mathfrak{R} \cdot \alpha_{0}=52$.

Conclusion: $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$.

The numerical characters of the spin family $\mathfrak{R} \subset \overline{\mathcal{S}}_{8}^{+}$:

- $\mathfrak{R} \cdot \lambda=\pi_{*}(\mathfrak{R}) \cdot \lambda=g+1=9$.
- $\mathfrak{R} \cdot\left(\alpha_{0}+2 \beta_{0}\right)=\pi_{*}(\mathfrak{R}) \cdot \delta_{0}=6(g+3)=66$ (number of singular fibres in a pencil of genus g curves on a $K 3$ surface).
The pencil $\mathfrak{R} \subset \overline{\mathcal{S}}_{8}^{+}$contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in \mathbf{P}^{3} containing the rulings through the points $I_{0} \cap Q_{0}$. Each of these counts with multiplicity $7 / 2$ (the division by 2 because of the branching of β_{0}). Therefore

$$
\mathfrak{R} \cdot \beta_{0}=\frac{7}{2}+\frac{7}{2}=7
$$

and then $\mathfrak{R} \cdot \alpha_{0}=52$.

The numerical characters of the spin family $\mathfrak{R} \subset \overline{\mathcal{S}}_{8}^{+}$:

- $\mathfrak{R} \cdot \lambda=\pi_{*}(\mathfrak{R}) \cdot \lambda=g+1=9$.
- $\mathfrak{R} \cdot\left(\alpha_{0}+2 \beta_{0}\right)=\pi_{*}(\mathfrak{R}) \cdot \delta_{0}=6(g+3)=66$ (number of singular fibres in a pencil of genus g curves on a $K 3$ surface).
The pencil $\mathfrak{R} \subset \overline{\mathcal{S}}_{8}^{+}$contains two singular fibres consisting each of two elliptic curves meeting in 7 points; these correspond to the planes in \mathbf{P}^{3} containing the rulings through the points $I_{0} \cap Q_{0}$. Each of these counts with multiplicity $7 / 2$ (the division by 2 because of the branching of β_{0}). Therefore

$$
\mathfrak{R} \cdot \beta_{0}=\frac{7}{2}+\frac{7}{2}=7
$$

and then $\mathfrak{R} \cdot \alpha_{0}=52$.

$$
\mathfrak{R} \cdot \bar{\Theta}_{\text {null }}=\mathfrak{R} \cdot\left(\frac{\lambda}{4}-\frac{\alpha_{0}}{16}\right)=\frac{9}{4}-\frac{52}{16}=-1<0 .
$$

Conclusion: $\kappa\left(\overline{\mathcal{S}}_{8}^{+}\right)=0$.

Nikulin surfaces and $\overline{\mathcal{S}}_{g}^{+}$
Given a $K 3$ surface S and a collection $\left\{R_{j}\right\}_{j=1}^{N}$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a $2: 1$ cover $\widetilde{S} \rightarrow S$ branched precisely along $\bigcup_{j=1}^{N} R_{j}$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that

$$
2 e=\mathcal{O}_{S}\left(R_{1}+\cdots+R_{N}\right)
$$

Answer

We introduce several moduli spaces: the

Nikulin surfaces and $\overline{\mathcal{S}}_{g}^{+}$

 Given a $K 3$ surface S and a collection $\left\{R_{j}\right\}_{j=1}^{N}$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a $2: 1$ cover $\widetilde{S} \rightarrow S$ branched precisely along $\bigcup_{j=1}^{N} R_{j}$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that$$
2 e=\mathcal{O}_{S}\left(R_{1}+\cdots+R_{N}\right)
$$

Answer:

1. $N=16$ and \widetilde{S} is birational to an abelian variety: Kummer surface.
2. $N=8$ and \widetilde{S} is again a $K 3$ surface: Nikulin surface We introduce several moduli spaces: the

Nikulin surfaces and $\overline{\mathcal{S}}_{g}^{+}$

 Given a $K 3$ surface S and a collection $\left\{R_{j}\right\}_{j=1}^{N}$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a $2: 1$ cover $\widetilde{S} \rightarrow S$ branched precisely along $\bigcup_{j=1}^{N} R_{j}$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that$$
2 e=\mathcal{O}_{S}\left(R_{1}+\cdots+R_{N}\right)
$$

Answer:

1. $N=16$ and \widetilde{S} is birational to an abelian variety: Kummer surface.
2. $N=8$ and \widetilde{S} is again a $K 3$ surface: Nikulin surface

We introduce several moduli spaces: the Prym moduli space

$$
\mathcal{R}_{g}:=\left\{[C, \eta]:[C] \in \mathcal{M}_{g}, \eta \in \operatorname{Pic}^{0}(C), \eta^{\otimes 2}=\mathcal{O}_{C}\right\} .
$$

Nikulin surfaces and $\overline{\mathcal{S}}_{g}^{+}$

 Given a $K 3$ surface S and a collection $\left\{R_{j}\right\}_{j=1}^{N}$ of disjoint rational curves on S, Nikulin asked in 1975, when is there a $2: 1$ cover $\widetilde{S} \rightarrow S$ branched precisely along $\bigcup_{j=1}^{N} R_{j}$? Equivalently, $\exists e \in \operatorname{Pic}(S)$, such that$$
2 e=\mathcal{O}_{S}\left(R_{1}+\cdots+R_{N}\right)
$$

Answer:

1. $N=16$ and \widetilde{S} is birational to an abelian variety: Kummer surface.
2. $N=8$ and \widetilde{S} is again a $K 3$ surface: Nikulin surface

We introduce several moduli spaces: the Prym moduli space

$$
\mathcal{R}_{g}:=\left\{[C, \eta]:[C] \in \mathcal{M}_{g}, \eta \in \operatorname{Pic}^{0}(C), \eta^{\otimes 2}=\mathcal{O}_{C}\right\} .
$$

Moduli space of Nikulin surfaces

$$
\begin{gathered}
\mathcal{N}_{g}:=\left\{\left[S, \mathcal{O}_{S}(C), e\right]: C^{2}=2 g-2, \operatorname{Pic}(S) \supset \mathbb{Z}\left\langle R_{1}, \ldots, R_{8}, C\right\rangle,\right. \\
\left.R_{i}^{2}=-2, \quad R_{i} \cdot R_{j}=0 \text { for } i \neq j, \quad C \cdot R_{i}=0,2 e=\mathcal{O}_{C}\left(R_{1}+\cdots+R_{8}\right)\right\} .
\end{gathered}
$$

\mathbf{P}^{g}-bundle over \mathcal{N}_{g}

$$
\mathcal{P} \mathcal{N}_{g}:=\left\{([S, C, e]):\left[S, \mathcal{O}_{S}(C)\right] \in \mathcal{N}_{g}, C \subset S\right\}
$$

There exists map $\chi_{g}: \mathcal{P} \mathcal{N}_{g} \rightarrow \mathcal{R}_{g}$

$$
[S, C, e] \stackrel{\chi}{\longmapsto}\left[C, e \otimes \mathcal{O}_{C}\right] \in \mathcal{R}_{g} .
$$

Dimension count:

$\operatorname{dim}\left(\mathcal{N}_{g}\right)=11\left(=19-\#\left\{R_{j}\right\}_{j=1}^{8}\right) ; \operatorname{dim}\left(P \mathcal{N}_{g}\right)=11+g$.
Question
When is χ_{g} dominant? A necessary condition is that

$$
11+g \geq 3 g-3 \Leftrightarrow g \leq 7 .
$$

\mathbf{P}^{g}-bundle over \mathcal{N}_{g}

$$
\mathcal{P} \mathcal{N}_{g}:=\left\{([S, C, e]):\left[S, \mathcal{O}_{S}(C)\right] \in \mathcal{N}_{g}, C \subset S\right\}
$$

There exists map $\chi_{g}: \mathcal{P} \mathcal{N}_{g} \rightarrow \mathcal{R}_{g}$

$$
[S, C, e] \stackrel{\chi}{\longmapsto}\left[C, e \otimes \mathcal{O}_{C}\right] \in \mathcal{R}_{g} .
$$

Dimension count: $\operatorname{dim}\left(\mathcal{N}_{g}\right)=11\left(=19-\#\left\{R_{j}\right\}_{j=1}^{8}\right) ; \operatorname{dim}\left(\mathcal{P} \mathcal{N}_{g}\right)=11+g$.
Question
When is χ_{g} dominant? A necessary condition is that

$$
11+g \geq 3 g-3 \Leftrightarrow g \leq 7
$$

\mathbf{P}^{g}-bundle over \mathcal{N}_{g}

$$
\mathcal{P} \mathcal{N}_{g}:=\left\{([S, C, e]):\left[S, \mathcal{O}_{S}(C)\right] \in \mathcal{N}_{g}, C \subset S\right\}
$$

There exists map $\chi_{g}: \mathcal{P} \mathcal{N}_{g} \rightarrow \mathcal{R}_{g}$

$$
[S, C, e] \stackrel{\chi}{\longmapsto}\left[C, e \otimes \mathcal{O}_{C}\right] \in \mathcal{R}_{g} .
$$

Dimension count: $\operatorname{dim}\left(\mathcal{N}_{g}\right)=11\left(=19-\#\left\{R_{j}\right\}_{j=1}^{8}\right) ; \operatorname{dim}\left(\mathcal{P} \mathcal{N}_{g}\right)=11+g$.

Question

When is χ_{g} dominant? A necessary condition is that

$$
11+g \geq 3 g-3 \Leftrightarrow g \leq 7
$$

Theorem
(F, Verra 2009) The general Prym curve $[C, \eta] \in \mathcal{R}_{g}$ lies on a Nikulin surface if and only if $g \leq 7, g \neq 6$.

Remark
In genus 6: the locus $\operatorname{Im}\left(\chi_{6}\right) \subset \mathcal{R}_{6}$ is a divisor, namely the locus of the Prym map $\mathfrak{P r}: \mathcal{R}_{6} \rightarrow \mathcal{A}_{5}$. The general Prym curve
$[C, \eta] \in \mathcal{R}_{6}$, lies instead on an Enriques surface!
Theorem
(Mukai) The general $[C] \in \mathcal{M}_{g}$ lies on a $K 3$ surface if and only if $\mathrm{g} \leq 11$ and $g \neq 10$. In genus 10 , the locus

$$
\mathcal{K}_{10}:=\left\{[C] \in \mathcal{M}_{10}: C \text { lies on a K3 surface }\right\}
$$

is an irreducible divisor on \mathcal{M}_{10}.

Theorem
(F, Verra 2009) The general Prym curve $[C, \eta] \in \mathcal{R}_{g}$ lies on a Nikulin surface if and only if $g \leq 7, g \neq 6$.

Remark
In genus 6: the locus $\operatorname{Im}\left(\chi_{6}\right) \subset \mathcal{R}_{6}$ is a divisor, namely the ramification locus of the Prym map $\mathfrak{P r}: \mathcal{R}_{6} \rightarrow \mathcal{A}_{5}$. The general Prym curve $[C, \eta] \in \mathcal{R}_{6}$, lies instead on an Enriques surface!

Theorem
(Mukai) The general $[C] \in \mathcal{M}_{g}$ lies on a K3 surface if and only if $g \leq 11$ and $g \neq 10$. In genus 10 , the locus

$$
\mathcal{K}_{10}:=\left\{[C] \in \mathcal{M}_{10}: C \text { lies on a K3 surface }\right\}
$$

is an irreducible divisor on \mathcal{M}_{10}.

Theorem

(F, Verra 2009) The general Prym curve $[C, \eta] \in \mathcal{R}_{g}$ lies on a Nikulin surface if and only if $g \leq 7, g \neq 6$.

Remark
In genus 6: the locus $\operatorname{Im}\left(\chi_{6}\right) \subset \mathcal{R}_{6}$ is a divisor, namely the ramification locus of the Prym map $\mathfrak{P r}: \mathcal{R}_{6} \rightarrow \mathcal{A}_{5}$. The general Prym curve $[C, \eta] \in \mathcal{R}_{6}$, lies instead on an Enriques surface!

Theorem

(Mukai) The general $[C] \in \mathcal{M}_{g}$ lies on a K3 surface if and only if $g \leq 11$ and $g \neq 10$. In genus 10 , the locus

$$
\mathcal{K}_{10}:=\left\{[C] \in \mathcal{M}_{10}: C \text { lies on a } K 3 \text { surface }\right\}
$$

is an irreducible divisor on \mathcal{M}_{10}.

Theorem

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g \leq 7$. Sketch of proof: Start with $[C, \eta] \in \mathcal{S}_{g}^{+}$. Choose $e_{C} \in \operatorname{Pic}^{0}(C)[2]$ such that $\eta \otimes e_{C}=\mathcal{O}_{C}\left(x_{1}+\cdots+x_{g-1}\right)$ is an odd theta-characteristic. Let

$$
(C, \eta C) \subset(S, e) \subset P^{s}
$$

be a Nikulin extension of C. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_{1}, \ldots, x_{g-1}

$$
\left\{H_{t}\right\}_{t \in \mathbf{P}^{1}}:=\left|\mathcal{I}_{\sum_{i=1}^{g-1} x_{i} / S}(C)\right|
$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

$$
\left\{\left[C_{t}:=H_{t} \cap S, \varepsilon_{t} \otimes O_{C_{t}}\left(x_{1}+\cdots+x_{g-1}\right)\right]\right\}_{t \in P^{1}} .
$$

Note that each section C_{t} will be tangent to H_{t} along the fixed divisor $x_{1}+\cdots+x_{g-1}$. So $\overline{\mathcal{S}}_{g}^{+}$is uniruled.

Theorem

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g \leq 7$. Sketch of proof: Start with $[C, \eta] \in \mathcal{S}_{g}^{+}$. Choose $e_{C} \in \operatorname{Pic}^{0}(C)[2]$ such that $\eta \otimes e_{C}=\mathcal{O}_{C}\left(x_{1}+\cdots+x_{g-1}\right)$ is an odd theta-characteristic.
be a Nikulin extension of C. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_{1}, \ldots, x_{g-1}

$$
\left\{H_{t}\right\}_{t \in \mathbf{P}^{1}}:=\left|\mathcal{I}_{\sum_{i=1}^{g-1} x_{i} / S}(C)\right|
$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

$$
\left\{\left[C_{t}:=H_{t} \cap S, e_{C_{t}} \otimes \mathcal{O}_{C_{t}}\left(x_{1}+\cdots+x_{g-1}\right)\right]\right\}_{t \in \mathrm{P}^{1}}
$$

Note that each section C_{t} will be tangent to H_{t} along the fixed divisor $x_{1}+\cdots+x_{g-1}$. So $\overline{\mathcal{S}}_{g}^{+}$is uniruled.

Theorem

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g \leq 7$. Sketch of proof: Start with $[C, \eta] \in \mathcal{S}_{g}^{+}$. Choose $e_{C} \in \operatorname{Pic}^{0}(C)[2]$ such that $\eta \otimes e_{C}=\mathcal{O}_{C}\left(x_{1}+\cdots+x_{g-1}\right)$ is an odd theta-characteristic.
Let

$$
\left(C, \eta_{C}\right) \subset(S, e) \subset \mathbf{P}^{g}
$$

be a Nikulin extension of C. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_{1}, \ldots, x_{g-1} :

$$
\left\{H_{t}\right\}_{t \in \mathbf{P}^{1}}:=\left|\mathcal{I}_{\sum_{i=1}^{g-1} x_{i} / S}(C)\right|
$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

Note that each section C_{t} will be tangent to H_{t} along the fixed divisor

Theorem

(F, Verra 2010) The even spin moduli space $\overline{\mathcal{S}}_{g}^{+}$is uniruled for $g \leq 7$. Sketch of proof: Start with $[C, \eta] \in \mathcal{S}_{g}^{+}$. Choose $e_{C} \in \operatorname{Pic}^{0}(C)[2]$ such that $\eta \otimes e_{C}=\mathcal{O}_{C}\left(x_{1}+\cdots+x_{g-1}\right)$ is an odd theta-characteristic. Let

$$
\left(C, \eta_{C}\right) \subset(S, e) \subset \mathbf{P}^{g}
$$

be a Nikulin extension of C. Consider the pencil of hyperplanes in \mathbf{P}^{g} through the points x_{1}, \ldots, x_{g-1} :

$$
\left\{H_{t}\right\}_{t \in \mathbf{P}^{1}}:=\left|\mathcal{I}_{\sum_{i=1}^{g-1} x_{i} / S}(C)\right|
$$

induces a rational covering curve in $\overline{\mathcal{S}}_{g}^{+}$:

$$
\left\{\left[C_{t}:=H_{t} \cap S, e_{C_{t}} \otimes \mathcal{O}_{C_{t}}\left(x_{1}+\cdots+x_{g-1}\right)\right]\right\}_{t \in \mathbf{P}^{1}}
$$

Note that each section C_{t} will be tangent to H_{t} along the fixed divisor $x_{1}+\cdots+x_{g-1}$. So $\overline{\mathcal{S}}_{g}^{+}$is uniruled.

