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Definition
I It is known that a compact complex surface with the

same Betti numbers as CP2 is projective.
Such a surface is called a fake projective plane if it is not
isomorphic to CP2.

I KX of a fpp X is ample. So a fpp is exactly a surface of
general type with pg(X ) = 0 and c1(X )2 = 3c2(X ) = 9.

I Its universal cover is the unit 2-ball B2 ⊂ C2

(Aubin76-Yau77), hence π1(X ) is infinite.
I π1(X ) is a discrete, torsion-free, cocompact subgroup of

PU(2, 1). Such ball quotients are strongly rigid (Mostow’s
rigidity 73), so their moduli space consists of a finite
number of points.

I π1(X ) has covolume 1 in PU(2, 1) (Hirzebruch
Proportionality 1958).

REMARK. For differential topologists, a fake projective plane
would mean a simply connected symplectic 4-manifold with
the same Betti numbers as CP2, but not diffeomorphic to CP2.
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Known constructions

Mumford(1979) proved the existence of a fpp, based on the
theory of the p-adic unit ball.

Using the same idea, Ishida and Kato(1998) proved the
existence of two more.

Keum(2006) gave a construction of a fpp by taking a degree 3
cover and then degree 7 cover of a suitable contraction of a
(2, 3)-elliptic surface, described by Ishida(1988), which is
covered by Mumford’s fpp.
Both fpp’s are degree 21 covers of Ishida’s surface, one is
Galois, the other is not.

REMARK. Ishida’s surface is the ball quotient by a maximal
arithmetic subgroup of PU(2, 1) containing torsion elements.
It is not known how to construct it geometrically.
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Prasad-Yeung’s classification (2007, 2010)
Klingler(2003): every discrete, torsion-free, cocompact
subgroup Π < PU(2, 1) having minimal Betti numbers is
arithmetic.

Description of algebraic groups in which Π is arithmetic
I There is a pair (k , l) of number fields, k is totally real, l a

totally complex quadratic extension of k .
I There is a central simple algebra D of degree 3 with

center l and an involution ι of the second kind on D such
that k = lι.

I The algebraic group
Ḡ(k) ∼= {z ∈ D|ι(z)z = 1}/{t ∈ l |̄t t = 1}.

I There is one Archimedean place ν0 of k so that
Ḡ(kν0)

∼= PU(2, 1) and Ḡ(kν) is compact for all other
Arch. places ν.

I The data (k , l , D, ν0) determines Ḡ up to k -isomorphism.
I Using Prasad’s volume formula, PY eliminated most

(k , l , D, ν0), making a short list of possibilities where Π’s
might occur, which yields a short list of maximal
arithmetic subgroups Γ̄ which might contain a Π.
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Ḡ(k) ∼= {z ∈ D|ι(z)z = 1}/{t ∈ l |̄t t = 1}.

I There is one Archimedean place ν0 of k so that
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It turns out that the index of such a Π in Γ̄ is 1, 3, 9, or 21.

The index depends only on Γ̄ and all Π’s in the same Γ̄ have
the same index.

COROLLARY.

Aut(X ) ∼= N(π1(X ))/π1(X ),

where N(π1(X )) is the normalizer of π1(X ) in Γ̄.
In particular,

Aut(X ) = {1}, Z/3Z, (Z/3Z)2, 7 : 3.
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Cartwright and Steger’s computation (2010)

I There are exactly 28 Γ̄’s (or 28 classes).
I There are exactly 50 Π’s. Each corresponds to two fpp’s,

complex conjugate to each other.
I There are exactly 100 fpp’s.
I 39 of the 50 have Aut(X ) 6= {1}.
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Quotients of fake projective planes
We classified all possible structures of the quotient surface
X/G and its minimal resolution (Keum 2008).

1. If G = Z/3Z, then X/G is a Q-homology projective plane

with 3 singular points of type
1
3

(1, 2) and its minimal
resolution is a minimal surface of general type with
pg = 0 and K 2 = 3.

2. If G = (Z/3Z)2, then X/G is a Q-homology projective

plane with 4 singular points of type
1
3

(1, 2) and its
minimal resolution is a minimal surface of general type
with pg = 0 and K 2 = 1.

3. If G = Z/7Z, then X/G is a Q-homology projective plane

with 3 singular points of type
1
7

(1, 5) and its minimal
resolution is a (2, 3)-, (2, 4)-, or (3, 3)-elliptic surface.

4. If G = 7 : 3, then X/G is a Q-homology projective plane

with 4 singular points, 3 of type
1
3

(1, 2) and one of type
1
7

(1, 5), and its minimal resolution is a (2, 3)-, (2, 4)-, or
(3, 3)-elliptic surface.
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The result was obtained by a general consideration, not using
the ball quotient structure.

Here, a Q-homology projective plane is a normal projective
surface with the same Betti numbers as P2.
A fpp is a nonsingular Q-homology projective plane, hence
every quotient of a fpp is again a Q-homology projective
plane.

An (a, b)-elliptic surface is a relatively minimal elliptic surface
over P1 with two multiple fibres of multiplicity a and b
respectively.
It has Kodaira dimension 1 if and only if
a ≥ 2, b ≥ 2, a + b ≥ 5.
It is an Enriques surface iff a = b = 2, and it is rational iff
a = 1 or b = 1.
All (a, b)-elliptic surfaces have pg = q = 0.
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Reverse Construction

Given a Q-homology projective plane satisfying one of the
descriptions 1-4, can one construct a fpp by taking a suitable
cover, or a composition of two suitable covers?
In other words, do the descriptions (1)-(4) above characterize
the quotients of fake projective planes?

Theorem
Let Z be a Q-homology projective plane satisfying one of the
descriptions (1)-(4) above. Assume that H1(Z , Z) has no
element of order 3. Then a fpp can be constructed from Z.
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Outline of Proof

By a lattice theory, the basket of singularities implies the
existence of a suitable cover, or a composition of two suitable
covers branched at the singularities, yielding a nonsingular
surface X .

Easy to see that KX is nef, K 2
X = 9 and c2(X ) = 3, pg = q.

Use the following
FACT: A surface of general type with K 2

X = 9 and c2(X ) = 3
has pg = q ≤ 1.

The case pg = q = 1 can be eliminated by considering the
Albenese fibration, and by Holomorphic Lefschetz and
Topological Lefschetz applied to an automorphism σ of X of
order 3 or 7 with such fixed points.

14/20
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Proof of the FACT

FACT: A surface of general type with K 2
X = 9 and c2(X ) = 3

has pg = q ≤ 1.

A surface of general type with c2(X ) = 3 cannot have a
fibration over a curve of genus ≥ 2. So, by Castelnuovo-de
Franchis, pg ≥ 2q − 3, hence pg = q ≤ 3.

The case pg = q = 3 was eliminated by
Catanese-Ciliberto-MLopes 1998 and Hacon-Pardini 2002.

The case pg = q = 2 was eliminated by Yeung.
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Catanese-Ciliberto-MLopes 1998 and Hacon-Pardini 2002.

The case pg = q = 2 was eliminated by Yeung.
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Fundamental group of a quotient X/G

Write the group G ∼= G̃/π1(X ), where π1(X ) < G̃ < Γ̄. Then

π1(X/G) ∼= G̃/ <torsion elements>.

These groups have been computed by Cartwright and Steger.
According to their computation (unpublished),

π1(X/G) = {1} or Z/2Z, if G = Z/7Z, (Z/3Z)2 or 7 : 3.

In particular, (3, 3)-elliptic surface does not occur in my list.
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(2, 3)-elliptic surface case

Theorem
Let Z be a Q-homology projective plane with 4 singular

points, 3 of type
1
3

(1, 2) and one of type
1
7

(1, 5). Assume that

its minimal resolution V is a (2, 3)-elliptic surface.
1. There is a triple cover Y ′ → Z branched at the three

singular points of type
1
3

(1, 2), and Y ′ is a Q-homology

projective plane with 3 singular points of type
1
7

(1, 5).
The minimal resolution Y of Y ′ is a (2, 3)-elliptic surface,
and every fibre of V does not split in Y .

2. The elliptic fibration on V has 4 singular fibres of type I3,
some of them may be a multiple fibre.

3. The elliptic fibration on Y has 4 singular fibres of type
µI9 + µ1I1 + µ2I1 + µ3I1.
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(2, 4)-elliptic surface case
Theorem
Let Z be a Q-homology projective plane with 4 singular

points, 3 of type
1
3

(1, 2) and one of type
1
7

(1, 5). Let V be the

minimal resolution of Z . Assume that V is a (2, 4)-elliptic
surface.

1. There is a triple cover Y ′ → Z branched at the three

singular points of type
1
3

(1, 2), and Y ′ is a Q-homology

projective plane with 3 singular points of type
1
7

(1, 5).
The minimal resolution Y of Y ′ is a (2, 3)-elliptic surface,
and every fibre of V does not split in Y .

2. The elliptic fibration on V has 4 fibres of type I3, some of
them may be a multiple fibre, and the fibre containing two

(−2)-curves lying over the singularity of type
1
7

(1, 5) has
multiplicity ≤ 2.

3. The elliptic fibration on Y has 4 singular fibres of type
µI9 + µ1I1 + µ2I1 + µ3I1 with µ ≤ 2.
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