Representations out of polydifferentials and the KZ-system

On the occasion of the sixtieth birthyear of Alessandro, Ciro and Fabrizio

Eduard Looijenga

September 6 2010 Levico Terme

Polydifferentials and the KZ-system

くロト (過) (目) (日)

Wess-Zumino-Witten subsystems of a KZ system

8 Representation theory via polydifferentials

Polydifferentials and the KZ-system

イロト イポト イヨト イヨト

Input data for the KZ system

- g: a simple finite dimensional complex Lie algebra.
- C ∈ (g ⊗ g)^g: represents a nondegenerate g-invariant symmetric bilinear form on g*; denote by q^C : g* → C the associated quadratic form q^C(u) := ½C(u ⊗ u).
- V₁,..., V_n finite dimensional irreps of g.

ヘロト 人間 とくほとく ほとう

Construction of the KZ system

 $\mathbf{V} := V_1 \otimes \cdots \otimes V_n$ (a representation of \mathfrak{g}). $C^{(\nu,\mu)}$ ($1 \leq \nu < \mu \leq n$): endomorphism of \mathbf{V} by letting C act through the tensor factors V_{ν} and V_{μ} ; commutes with the g-action, so preserves $\mathbf{V}^{\mathfrak{g}}$. Next consider

$$U_n := \{(p_1, \dots, p_n) \in \mathbb{C}^n \mid p_i \text{'s distinct}\}/(\text{transl grp } \mathbb{C}) \\= \text{lnj}(\underline{n}, \mathbb{C})/(\text{transl}),$$

where $\underline{n} := \{1, ..., n\}$. Note that $(z_{\nu} - z_{\mu})^{-1}$ is a regular function on U_n .

イロト 不得 とくほ とくほとう

Basic theorem about the KZ system

KZ connection ∇_{KZ}^{C} : on the trivial bundle over U_n with fiber $\mathbf{V}^{\mathfrak{g}}$, given by the End($\mathbf{V}^{\mathfrak{g}}$)-valued 1-form

$$\sum_{|\leq
u < \mu \leq n} rac{{\mathcal d}(z_
u - z_\mu)}{z_
u - z_\mu} \otimes ({\mathcal C}^{(
u,\mu)}|{\mathbf V}^{\mathfrak g}),$$

Theorem (well-known)

 ∇^{C}_{KZ} is flat (and has logarithmic singularities at infinity).

Yields local system $\mathbb{KZ}^{\mathcal{C}}(V_1, \ldots, V_n) \subset \mathcal{O}_{U_n} \otimes \mathbf{V}^{\mathfrak{g}}$, called the *KZ* system.

イロト 不得 とくほ とくほ とうほ

Basic question about the KZ system

Question

Is there a topological interpretation of the KZ system?

Only of interest when $V^{\mathfrak{g}} \neq 0$. Assume this. Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and a system of simple roots $\alpha_1, \ldots, \alpha_r$ in \mathfrak{h}^* . If $\lambda_{\nu} \in \mathfrak{h}^*$ highest weight of V_{ν} , then assumption implies:

$$\lambda_1 + \cdots + \lambda_n = m_1 \alpha_1 + \cdots + m_r \alpha_r$$

for certain $m_k \in \mathbb{Z}_{\geq 0}$. Let $m := m_1 + \cdots + m_r$.

ヘロト 人間 とくほとく ほとう

A moduli space

Choose a finite set *M* of *m* elements and put

$$U_{n,M} := \operatorname{Inj}(\underline{n} \sqcup M, \mathbb{C})/(\operatorname{transl}).$$

Modular interpretation for U_n as space of triples

$$(\mathcal{C}, \mathcal{Z} : \underline{n}_{\infty} \hookrightarrow \mathcal{C}, \omega)$$

with $C \cong \mathbb{P}^1$, $\underline{n}_{\infty} := \{1, \ldots, n, \infty\}$ and ω a nowhere zero differential on $C - \{z(\infty)\}$. Similarly, $U_{n,M}$ is the moduli space of triples

$$(C, Z \sqcup t : \underline{n}_{\infty} \sqcup M \hookrightarrow C, \omega)$$

くロト (過) (目) (日)

Partial completion of the moduli space

Forgetting *t* defines $p: U_{n,M} \rightarrow U_n$.

Factors through a partial Deligne-Mumford compactification:

$$p: U_{n,M} \subset \hat{U}_{n,M} \xrightarrow{\hat{p}} U_n$$

with \hat{p} proper; this allows for stable pointed genus zero curves $(C, z \sqcup t : \underline{n}_{\infty} \sqcup M \hookrightarrow C)$ provided that after forgetting t, (C, z) can be contracted to define an element of U_n .

ヘロト 人間 とくほとくほとう

Boundary divisors

 $\hat{U}_{n,M}$ is smooth and $\Delta_{n,M} := \hat{U}_{n,M} - U_{n,M}$ is a simple normal crossing divisor. Its irr components come in 3 types, each indexed by nonempty subsets *X* of *M*, telling us how $\underline{n}_{\infty} \sqcup M$ is split into two parts by a stable curve with two irreducible components:

$$\begin{split} &\Delta(X): X \Big| (M-X) \sqcup \underline{n}_{\infty}, \ \#(X) \geq 2, \\ &\Delta_{\infty}(X): X \sqcup \{ \infty \} \Big| (M-X) \sqcup \underline{n}, \\ &\Delta_{\nu}(X): X \sqcup \{\nu\} \Big| (M-X) \sqcup \underline{n}_{\infty} - \{\nu\}. \end{split}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

A remarkable differential

Now let $\pi : M \to \{1, ..., r\}, i \mapsto \overline{i}$, be a map such that the fiber over k, M_k , has m_k elements. Consider the following multivalued function on $U_{n,M}$:

$$\mathcal{F}^{\mathcal{C}} := \prod_{\substack{i \in \mathcal{M} \\
u=1,...,n}} (t_i - z_{\nu})^{\mathcal{C}(\alpha_i,\lambda_{
u})} \prod_{\substack{i,j \in \mathcal{M} \\ i \neq j}} (t_i - t_j)^{-\mathcal{C}(\alpha_i,\alpha_j)/2}.$$

Its logarithmic differential is:

$$\eta^{C} := d \log F^{C} = \sum_{\substack{i \in M \\ \nu = 1, \dots, n}} C(\alpha_{\overline{i}}, \lambda_{\nu}) \frac{d(t_{i} - z^{\nu})}{t_{i} - z^{\nu}} - \frac{1}{2} \sum_{\substack{i, j \in M \\ i \neq j}} C(\alpha_{\overline{i}}, \alpha_{\overline{j}}) \frac{d(t_{i} - t_{j})}{t_{i} - t_{j}}.$$

A flat connection

Put $d^C := d - \eta^C = F^C d(F^C)^{-1}$ and regard this as a connection on $\mathcal{O}_{U_{n,M}}$. Its locally flat sections define local system $\mathbb{L}^C \subset \mathcal{O}_{U_{n,M}}$ (determinations of F^C yield local generators). It is unitary if *C* defined over \mathbb{R} (then determinations of F^C have norm 1). Monodromy of \mathbb{L}^C around $\Delta_{n,M}$ given by residues:

Lemma

Let $\rho \in \mathfrak{h}^*$ be the half sum of the positive roots; for $X \subset M$ write $\alpha_X := \sum_{x \in X} \alpha_{\overline{x}}$. Then • $\operatorname{Res}_{\Delta(X)} \eta^C = q^C(\rho) - q^C(\rho - \alpha_X)$, • $\operatorname{Res}_{\Delta_{\infty}(X)} \eta^C = q^C(\rho) - q^C(\rho + \alpha_X)$, • $\operatorname{Res}_{\nu} \Delta(X) \eta^C = q^C(\rho + \lambda_{\nu}) - q^C(\rho + \lambda_{\nu} - \alpha_X)$

ヘロン ヘアン ヘビン ヘビン

A local system

Now let

$$U_{n,M} \stackrel{j}{\hookrightarrow} U \hookrightarrow \hat{U}_{n,M}$$

be obtained by removing some irreducible components of $\Delta_{n,M}$ from $\hat{U}_{n,M}$. Namely: remove (resp. do *not* remove) a component if η^C there a residue in $\mathbb{Z}_{\geq 0}$ (resp. $\mathbb{Z}_{<0}$) and if the residue is not in \mathbb{Z} do as you like.

A topologically defined local system on U_n is given by

$$\mathbb{H}^{\mathcal{C}}(\lambda_1,\ldots,\lambda_n):=R^m(\hat{p}|U)_*j_!\mathbb{L}^{\mathcal{C}}.$$

Note it comes with an action of $\mathfrak{S}(M)_{\pi} = \mathfrak{S}(M_1) \times \cdots \times \mathfrak{S}(M_r)$. Stalk at $z \in U_n$ is $H^m(U(z), U(z) \cap \Delta_{n,M}; \mathbb{L}^C)$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Topological interpretation of the KZ system

Theorem

The KZ local system $\mathbb{KZ}^{C}(V_1, \ldots, V_n)$ is naturally embedded as a subsystem of

$$\operatorname{Hom}_{\mathfrak{S}(M)_{\pi}}\Big(\wedge^{m}(\mathbb{C}^{M}),\mathbb{H}^{C}(\lambda_{1},\ldots,\lambda_{n})\Big).$$

Remarks:

1. There is a precise description for this as a subsystem.

2. Schechtman-Varchenko constructed a map from the KZ system to a similarly defined local system, but in which U is replaced by $U_{n,M}$. It factors through ours, but is probably not always injective.

ヘロト 人間 ト ヘヨト ヘヨト

The algebraic case

If *C* defined over \mathbb{Q} , then we can be more concrete: F^{C} is algebraic in the sense that it becomes univalued on an finite covering $U_{n,M}^{\natural} \to U_{n,M}$. This covering is abelian: if \mathbb{L}^{C} has monodromy group $\mu_{s} \subset \mathbb{C}^{\times}$, then it is a μ_{s} -covering and \mathbb{L}^{C} sits in the direct image of $\mathbb{C}_{U_{n,M}^{\natural}}$ on $U_{n,M}$ as the eigenspace for the tautological character $\chi : \mu_{s} \subset \mathbb{C}^{\times}$. Let

$$U^{
atural}_{n,M} \subset U^{
atural} \overset{j^{
atural}}{\hookrightarrow} \hat{U}^{
atural}_{n,M}$$

have the obvious meaning and let $p^{\natural}: U^{\natural} \rightarrow U_n$ be the projection. Then

$$\mathbb{H}^{\mathcal{C}}(\lambda_1,\ldots,\lambda_n)=(\mathcal{R}^m p_*^{\natural} j_!^{\natural} \mathbb{C})^{\chi}.$$

・ロット (雪) () () () ()

The WZW subsystem

This occurs for the WZW systems (these involve a particular choice of *C*).

Let $\theta \in \mathfrak{h}^*$ be the highest root, $\check{\theta} \in \mathfrak{h}$ the corresponding coroot. Fix (a *level*) $\ell \in \{1, 2, ...\}$ and take $C = C_{\ell}$ with $C_{\ell} \in (\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$ characterized by $q_{C_{\ell}}(\theta) = (\rho(\check{\theta}) + 1 + \ell)^{-1}$.

Choose $e_{\theta} \in \mathfrak{g}_{\theta}$ a generator of the corresponding root space and let $\mathcal{E}_{\theta} \in \mathcal{O}_{U_n} \otimes_{\mathbb{C}} \operatorname{End}(V_1 \otimes \cdots \otimes V_n)$ be defined by

$$\mathcal{E}_{\theta}(\mathbf{z}) := \sum_{\nu=1}^{n} 1 \otimes \cdots \otimes z_{\nu} X_{\theta} \otimes \cdots \otimes 1.$$

ヘロト ヘアト ヘビト ヘビト

WZW-subsystem

Proposition (Beilinson-Feigin)

Then the subsheaf of $\mathcal{O}_{U_n} \otimes \mathbf{V}^{\mathfrak{g}}$ defined by

$$\mathcal{W}_{\ell}(V_1,\ldots,V_n) := \ker(\mathcal{E}_{\theta}^{1+\ell}|\mathcal{O}_{U_n}\otimes \mathbf{V}^{\mathfrak{g}})$$

is flat for $\nabla_{KZ}^{C_{\ell}}$ and hence defines a local subsystem $\mathbb{W}_{\ell}(V_1, \ldots, V_n) \subset \mathbb{KZ}^{C_{\ell}}(V_1, \ldots, V_n).$

 $\mathbb{W}_{\ell}(V_1,\ldots,V_n)$ is called the Wess-Zumino-Witten system of level ℓ .

イロト イポト イヨト イヨト 三日

A conjecture

Conjecture (1)

 $\mathbb{W}_{\ell}(V_1,\ldots,V_n)$ is a unitary system

This would in fact follow from the truth of

Conjecture (2)

 $\mathbb{W}_{\ell}(V_1, \ldots, V_n)$ maps under the embedding described above to the direct image of $\hat{p}_*^{\natural} \omega_{\hat{U}_{n,M}^{\natural}/U_n}$.

For the flatness of $\mathbb{W}_{\ell}(V_1, \ldots, V_n)$ would then make it a summand of a polarized *rigid local system*, purely of Hodge type (m, 0).

This last conjecture was proved by Ramadas in case $\mathfrak{g} = \mathfrak{sl}(2)$.

イロト 不得 とくほ とくほ とうほ

Serre presentation of \mathfrak{g}

Let $(c_{k,l})_{k,l=1}^r$ be the Cartan matrix of \mathfrak{g} : \mathfrak{g} has generators $e_1, \ldots, e_r, f_1, \ldots, f_r$ subject to the relations $[e_k, f_l] = 0$ for $k \neq l$ and if we put $\check{\alpha}_k := [e_k, f_k]$, then

$$[\check{\alpha}_k, \boldsymbol{e}_l] = \boldsymbol{c}_{k,l} \boldsymbol{e}_l, \quad [\check{\alpha}_k, f_l] = -\boldsymbol{c}_{k,l} f_l, \quad [\check{\alpha}_k, \check{\alpha}_l] = \boldsymbol{0}.$$

and also imposing the Serre relations

$$ad(f_k)^{1-c_{k,l}}f_l = 0$$
, $ad(e_k)^{1-c_{k,l}}e_l = 0$ $(k \neq l)$

 $\tilde{\mathfrak{g}}$: the Lie algebra that we get if we suppress only the last set of Serre relations.

 $\mathfrak{h} \subset \mathfrak{g}$ is the Cartan subalgebra spanned by the $\check{\alpha}_k$'s (also a subalgebra of $\tilde{\mathfrak{g}}$).

ヘロン ヘアン ヘビン ヘビン

Polydifferentials on a product of \mathbb{P}^1 's

Fix a set \mathcal{M} (soon to be countably inifinite). Let \mathcal{B} be the graded \mathbb{C} -vector space of the relative rational polydifferentials on $(\mathbb{P}^1)^{\mathcal{M}}_{\mathbb{C}} : (\mathbb{P}^1)^{\mathcal{M}} \times \mathbb{C} \to \mathbb{C}$ which is \mathbb{C} -spanned by the forms

$$\zeta_{I}(z) := \frac{dt_{i_{N}}dt_{i_{N-1}}\cdots dt_{i_{1}}}{(t_{i_{N}}-t_{i_{N-1}})\cdots (t_{i_{2}}-t_{i_{1}})(t_{i_{1}}-z)}$$

where $I = (i_N, i_{N-1}, ..., i_1)$ runs over the finite sequences in \mathcal{M} (we stipulate $\zeta_{\emptyset} = 1$). Notice that we get zero unless the sequence *I* is without repetition.

イロト 不得 とくほ とくほ とうほ

A shuffle algebra of polydifferentials

 $\hat{\mathcal{B}}^d$: the space of (possibly infinite) sums of these relative polydifferentials of degree *N*, $\hat{\mathcal{B}} := \bigoplus_{d=0}^{\infty} \hat{\mathcal{B}}^d$.

Lemma (Shuffle rule)

The graded vector space \mathcal{B} is closed under product (it is a shuffle algebra): for finite sequences in I and J in \mathcal{M} ,

$$\zeta_I \zeta_J = \sum_{K \text{ a shuffle of I and } J} \zeta_K$$

Polydifferentials and the KZ-system

ヘロト ヘ戸ト ヘヨト ヘヨト

Algebra of invariants in $\hat{\mathcal{B}}$

Now assume \mathcal{M} equipped with a map $\Pi : \mathcal{M} \to \{1, ..., r\}$, $i \mapsto \overline{i}$ such that every fiber \mathcal{M}_k is countably infinite. The group $\mathfrak{S}_{\Pi} = \mathfrak{S}(\mathcal{M}_1) \times \cdots \times \mathfrak{S}(\mathcal{M}_r)$ acts in $\hat{\mathcal{V}}$. Additive generators for $\hat{\mathcal{V}}^{\mathfrak{S}_{\Pi}}$ are indexed by finite sequences S in $\{1, ..., r\}$:

$$\zeta(\boldsymbol{S}) := \sum_{\Pi(I)=\boldsymbol{S}} \zeta_{I}.$$

We will produce the irreducible highest weight representation of \mathfrak{g} with highest weight $\lambda \in \mathfrak{h}^*$ inside $\hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}}$ with $\mathbf{1} \in \hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}}$ as highest weight vector.

ヘロア 人間 アメヨア 人口 ア

The operators \tilde{f}_k

Let $\lambda \in \mathfrak{h}^*$. For $k \in \{1, ..., r\}$ define an operator \tilde{f}_k in the space of rational polydifferentials on $(\mathbb{P}^1)^{\mathcal{M}}_{\mathbb{C}}$ by

$$\tilde{f}_k := \sum_{i \in \mathcal{M}_k} \Big(\frac{\lambda(\check{\alpha}_k) dt_i}{t_i - z} - \sum_{j \in \mathcal{M} - \{i\}} c_{k, \overline{j}} \frac{dt_i dt_j}{t_i - t_j} \iota_{\partial/\partial t_j} \Big),$$

Here dt_i is the multiplication operator in the space of these polydifferentials and by $\iota_{\partial/\partial t_i}$ its adjoint (which acts in the *i*th tensor factor by sending dt_i to 1 and 1 to 0). So for a finite subset $X \subset \mathcal{M}$, we have

$$\widetilde{f}_k\Big(\prod_{x\in X} dt_x\Big) = \sum_{i\in \mathcal{M}_k\setminus X} \Big(\frac{\lambda(\check{lpha}_k)}{t_i-z} - \sum_{x\in X} \frac{c_{k,\bar{x}}}{t_i-t_x}\Big) dt_i \prod_{x\in X} dt_x.$$

・ロト ・ 日本・ ・ 日本・

The operators \tilde{e}_k

One checks with the help of the shuffle rule that

$$\widetilde{f}_k(\zeta(\mathcal{S})) = \sum_{\mathcal{S}=\mathcal{S}''\mathcal{S}'} (\lambda(\check{lpha}_k) - c_{k,\mathcal{S}'})\zeta(\mathcal{S}''k\mathcal{S}').$$

so \tilde{f}_k preserves $\hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}}$. Define $\tilde{e}_k : \hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}} \to \hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}}$ by $\tilde{e}_k(\zeta(S)) := \begin{cases} \zeta(S') & \text{if } S = kS' \\ 0 & \text{otherwise} \end{cases}$

Has an interpretation as a residue taken at $t_i = \infty$, $i \in \mathcal{M}_k$.

ヘロト ヘアト ヘビト ヘビト

Polydifferential realization of $\mathcal{V}(\lambda)$

Theorem

The operators \tilde{e}_k , \tilde{f}_k , k = 1, ..., r, define a representation of $\tilde{\mathfrak{g}}$ on $\hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}}$ and $\tilde{\mathfrak{g}}$ acts on the $\tilde{\mathfrak{g}}$ -submodule $\mathcal{V}(\lambda)$ generated by 1 through the irrep of \mathfrak{g} with highest weight λ and highest weight vector 1.

ヘロン 人間 とくほ とくほ とう

Towards a tensor product of of irreps 1

Let $\lambda_1, \ldots, \lambda_n$ be dominant weights as before. Work now on

 $(\mathbb{P}^1)^{\mathcal{M}}_{\mathbb{C}^n}: (\mathbb{P}^1)^{\mathcal{M}} \times \mathbb{C}^n \to \mathbb{C}^n.$

For *n* sequences I_1, \ldots, I_n in \mathcal{M} we have the relative polydifferential

$$\omega_{I_1}(z_1)\omega_{I_2}(z_2)\cdots\omega_{I_n}(z_n).$$

on $(\mathbb{P}^1)^{\mathcal{M}}_{\mathbb{C}^n}(z_1,\ldots,z_n)$ are coordinates of \mathbb{C}^n). It is zero unless the concatenated sequence $I_1 \cdots I_n$ is without repetition.

イロト イポト イヨト イヨト 三日

Towards a tensor product of of irreps 2

 \mathcal{B}_n : the graded vector space spanned by these polydifferentials. $\hat{\mathcal{B}}_n = \bigoplus_d \hat{\mathcal{B}}_n^d$ with $\hat{\mathcal{B}}_n^d$ the completion of \mathcal{B}_n^d which allows for infinite sums.

Given *n* sequences $S^{\bullet} = (S_1, ..., S_n)$ in $\{1, ..., r\}$, we observe that

$$\prod_{\nu=1}^{n} \zeta(S_{\nu})(z_{\nu}) = \sum_{\substack{\overline{l_{\nu}}=S_{\nu}\\ \nu=1,\ldots,n}} \zeta_{l_{1}}(z_{1}) \cdots \zeta_{l_{n}}(z_{n}) \in \hat{\mathcal{B}}_{n}^{\mathfrak{S}_{\Pi}}.$$

These elements form a \mathbb{C} -basis of $\hat{\mathcal{B}}_n^{\mathfrak{S}_{\Pi}}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Towards a tensor product of irreps 3

So the above factorization defines an isomorphism

$$\hat{\mathcal{B}}_n^{\mathfrak{S}_{\Pi}} \cong \hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}}.$$

It is clear that $\mathcal{V}(\lambda_{\bullet}) = \mathcal{V}(\lambda_{1}) \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathcal{V}(\lambda_{n})$ is the smallest subspace of $\hat{\mathcal{B}}_{n}^{\mathfrak{S}_{\Pi}}$ that contains 1 and is invariant under the operators $\tilde{f}_{k}^{(\nu)}$ and $\tilde{e}_{k}^{(\nu)}$. It is the tensor product of *n* highest weight representations.

It follows from the residue interpretation of \tilde{e}_k that:

・ロン ・雪 と ・ ヨ と

Polydifferential realization of a tensor product of irreps

Theorem

The space of g-invariants $\mathcal{V}(\lambda_{\bullet})^{\mathfrak{g}}$ is the space of degree m polydifferentials in $\mathcal{V}(\lambda_{\bullet})_m$ that are regular along every hyperplane at infinity $(t_i = \infty)$, $i \in \mathcal{M}$.

If we now choose $M \subset \mathcal{M}$ such that $\pi := \Pi | M$, then we see that $\mathcal{V}(\lambda_{\bullet})_m$ can be realized as a space of polydifferentials on $\mathbb{P}^M_{\mathbb{C}^n}$. This leads to the interpretation of the KZ system in terms of $U_{n,M}/U_n$ as given above.

イロト イポト イヨト イヨト