Representations out of polydifferentials and the KZ-system

On the occasion of the sixtieth birthyear of Alessandro, Ciro and Fabrizio

Eduard Looijenga

September 62010 Levico Terme

Outline

(9) Knizhnik-Zamolodchikov systems
(2) Wess-Zumino-Witten subsystems of a KZ system
(3) Representation theory via polydifferentials

Input data for the KZ system

- \mathfrak{g} : a simple finite dimensional complex Lie algebra.
- $C \in(\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$: represents a nondegenerate \mathfrak{g}-invariant symmetric bilinear form on \mathfrak{g}^{*}; denote by $q^{C}: \mathfrak{g}^{*} \rightarrow \mathbb{C}$ the associated quadratic form $q^{C}(u):=\frac{1}{2} C(u \otimes u)$.
- V_{1}, \ldots, V_{n} finite dimensional irreps of \mathfrak{g}.

Construction of the KZ system

$\mathbf{V}:=V_{1} \otimes \cdots \otimes V_{n}$ (a representation of $\left.\mathfrak{g}\right)$.
$C^{(\nu, \mu)}(1 \leq \nu<\mu \leq n)$: endomorphism of \mathbf{V} by letting C act through the tensor factors V_{ν} and V_{μ}; commutes with the \mathfrak{g}-action, so preserves $\mathbf{V}^{\mathfrak{g}}$.
Next consider

$$
\begin{aligned}
U_{n} & :=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{C}^{n} \mid p_{i} ' \text { distinct }\right\} /(\text { transl grp } \mathbb{C}) \\
& =\operatorname{lnj}(\underline{n}, \mathbb{C}) /(\text { transl }),
\end{aligned}
$$

where $\underline{n}:=\{1, \ldots, n\}$.
Note that $\left(z_{\nu}-z_{\mu}\right)^{-1}$ is a regular function on U_{n}.

Basic theorem about the KZ system

KZ connection $\nabla_{K Z}^{C}$: on the trivial bundle over U_{n} with fiber $\mathbf{V}^{\mathfrak{g}}$, given by the $\operatorname{End}\left(\mathbf{V}^{\mathfrak{q}}\right)$-valued 1-form

$$
\sum_{1 \leq \nu<\mu \leq n} \frac{d\left(z_{\nu}-z_{\mu}\right)}{z_{\nu}-z_{\mu}} \otimes\left(C^{(\nu, \mu)} \mid \mathbf{V}^{\mathfrak{g}}\right),
$$

Theorem (well-known)

$\nabla_{K Z}^{C}$ is flat (and has logarithmic singularities at infinity).
Yields local system $\mathbb{K}^{C}\left(V_{1}, \ldots, V_{n}\right) \subset \mathcal{O}_{U_{n}} \otimes \mathbf{V}^{\mathfrak{g}}$, called the $K Z$ system.

Basic question about the KZ system

Question

Is there a topological interpretation of the KZ system?
Only of interest when $\mathbf{V}^{\mathfrak{g}} \neq 0$. Assume this.
Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and a system of simple roots
$\alpha_{1}, \ldots, \alpha_{r}$ in \mathfrak{h}^{*}.
If $\lambda_{\nu} \in \mathfrak{h}^{*}$ highest weight of V_{ν}, then assumption implies:

$$
\lambda_{1}+\cdots+\lambda_{n}=m_{1} \alpha_{1}+\cdots+m_{r} \alpha_{r}
$$

for certain $m_{k} \in \mathbb{Z}_{\geq 0}$. Let $m:=m_{1}+\cdots+m_{r}$.

A moduli space

Choose a finite set M of m elements and put

$$
U_{n, M}:=\operatorname{lnj}(\underline{n} \sqcup M, \mathbb{C}) /(\text { transl }) .
$$

Modular interpretation for U_{n} as space of triples

$$
\left(C, z: \underline{n}_{\infty} \hookrightarrow C, \omega\right)
$$

with $C \cong \mathbb{P}^{1}, \underline{n}_{\infty}:=\{1, \ldots, n, \infty\}$ and ω a nowhere zero differential on $C-\{z(\infty)\}$. Similarly, $U_{n, M}$ is the moduli space of triples

$$
\left(C, z \sqcup t: \underline{n}_{\infty} \sqcup M \hookrightarrow C, \omega\right)
$$

Partial completion of the moduli space

Forgetting t defines $p: U_{n, M} \rightarrow U_{n}$.
Factors through a partial Deligne-Mumford compactification:

$$
p: U_{n, M} \subset \hat{U}_{n, M} \xrightarrow{\hat{p}} U_{n}
$$

with \hat{p} proper; this allows for stable pointed genus zero curves $\left(C, z \sqcup t: \underline{n}_{\infty} \sqcup M \hookrightarrow C\right)$ provided that after forgetting $t,(C, z)$ can be contracted to define an element of U_{n}.

Boundary divisors

$\hat{U}_{n, M}$ is smooth and $\Delta_{n, M}:=\hat{U}_{n, M}-U_{n, M}$ is a simple normal crossing divisor. Its irr components come in 3 types, each indexed by nonempty subsets X of M, telling us how $\underline{n}_{\infty} \sqcup M$ is split into two parts by a stable curve with two irreducible components:

$$
\begin{gathered}
\Delta(X): X \mid(M-X) \sqcup \underline{n}_{\infty}, \#(X) \geq 2, \\
\Delta_{\infty}(X): X \sqcup\{\infty\} \mid(M-X) \sqcup \underline{n}, \\
\Delta_{\nu}(X): X \sqcup\{\nu\} \mid(M-X) \sqcup \underline{n}_{\infty}-\{\nu\} .
\end{gathered}
$$

A remarkable differential

Now let $\pi: M \rightarrow\{1, \ldots, r\}, i \mapsto \bar{i}$, be a map such that the fiber over k, M_{k}, has m_{k} elements. Consider the following multivalued function on $U_{n, M}$:

$$
F^{C}:=\prod_{\substack{i \in M \\ \nu=1, \ldots, n}}\left(t_{i}-z_{\nu}\right)^{C\left(\alpha_{i}, \lambda_{\nu}\right)} \prod_{\substack{i, j \in M \\ i \neq j}}\left(t_{i}-t_{j}\right)^{-C\left(\alpha_{i}, \alpha_{j}\right) / 2}
$$

Its logarithmic differential is:

$$
\begin{aligned}
\eta^{C}:=d \log F^{C}= & \sum_{\substack{i \in M \\
\nu=1, \ldots, n}} C\left(\alpha_{\bar{i}}, \lambda_{\nu}\right) \frac{d\left(t_{i}-z^{\nu}\right)}{t_{i}-z^{\nu}} \\
& -\frac{1}{2} \sum_{\substack{i, j \in M \\
i \neq j}} C\left(\alpha_{\bar{i}}, \alpha_{\bar{j}}\right) \frac{d\left(t_{i}-t_{j}\right)}{t_{i}-t_{j}}
\end{aligned}
$$

A flat connection

Put $d^{C}:=d-\eta^{C}=F^{C} d\left(F^{C}\right)^{-1}$ and regard this as a connection on $\mathcal{O}_{U_{n, M}}$. Its locally flat sections define local system $\mathbb{L}^{C} \subset \mathcal{O}_{U_{n, M}}$ (determinations of F^{C} yield local generators). It is unitary if C defined over \mathbb{R} (then determinations of F^{C} have norm 1). Monodromy of \mathbb{L}^{C} around $\Delta_{n, M}$ given by residues:

Lemma

Let $\rho \in \mathfrak{h}^{*}$ be the half sum of the positive roots; for $X \subset M$ write $\alpha_{X}:=\sum_{x \in X} \alpha_{\bar{x}}$. Then

- $\operatorname{Res}_{\Delta(X)} \eta^{C}=q^{C}(\rho)-q^{C}\left(\rho-\alpha_{X}\right)$,
- $\operatorname{Res}_{\Delta_{\infty}(X)} \eta^{C}=q^{C}(\rho)-q^{C}\left(\rho+\alpha_{X}\right)$,
- $\operatorname{Res}_{\nu} \Delta(X) \eta^{C}=q^{C}\left(\rho+\lambda_{\nu}\right)-q^{C}\left(\rho+\lambda_{\nu}-\alpha_{X}\right)$

A local system

Now let

$$
U_{n, M} \stackrel{j}{\hookrightarrow} U \hookrightarrow \hat{U}_{n, M}
$$

be obtained by removing some irreducible components of $\Delta_{n, M}$ from $\hat{U}_{n, M}$. Namely: remove (resp. do not remove) a component if η^{C} there a residue in $\mathbb{Z}_{\geq 0}\left(\right.$ resp. $\left.\mathbb{Z}_{<0}\right)$ and if the residue is not in \mathbb{Z} do as you like.
A topologically defined local system on U_{n} is given by

$$
\mathbb{H}^{C}\left(\lambda_{1}, \ldots, \lambda_{n}\right):=R^{m}(\hat{p} \mid U)_{*} j_{!} \mathbb{L}^{C}
$$

Note it comes with an action of $\mathfrak{S}(M)_{\pi}=\mathfrak{S}\left(M_{1}\right) \times \cdots \times \mathfrak{S}\left(M_{r}\right)$. Stalk at $z \in U_{n}$ is $H^{m}\left(U(z), U(z) \cap \Delta_{n, M} ; \mathbb{L}^{C}\right)$.

Topological interpretation of the KZ system

Theorem

The $K Z$ local system $\mathbb{K}^{C}\left(V_{1}, \ldots, V_{n}\right)$ is naturally embedded as a subsystem of

$$
\operatorname{Hom}_{\mathfrak{S}(M)_{\pi}}\left(\Lambda^{m}\left(\mathbb{C}^{M}\right), \mathbb{H}^{C}\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right)
$$

Remarks:

1. There is a precise description for this as a subsystem.
2. Schechtman-Varchenko constructed a map from the KZ system to a similarly defined local system, but in which U is replaced by $U_{n, M}$. It factors through ours, but is probably not always injective.

The algebraic case

If C defined over \mathbb{Q}, then we can be more concrete: F^{C} is algebraic in the sense that it becomes univalued on an finite covering $U_{n, M}^{\natural} \rightarrow U_{n, M}$. This covering is abelian: if \mathbb{L}^{C} has monodromy group $\mu_{s} \subset \mathbb{C}^{\times}$, then it is a μ_{s}-covering and \mathbb{L}^{C} sits in the direct image of $\mathbb{C}_{\tilde{n}_{n, M}^{\natural}}$ on $U_{n, M}$ as the eigenspace for the tautological character $\chi: \mu_{s} \subset \mathbb{C}^{\times}$. Let

$$
U_{n, M}^{\natural} \subset U^{\natural} \stackrel{j}{\natural}_{\stackrel{\natural}{4}}^{U_{n, M}^{\natural}}
$$

have the obvious meaning and let $p^{\natural}: U^{\natural} \rightarrow U_{n}$ be the projection. Then

$$
\mathbb{H}^{C}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(R^{m} p_{*}^{\natural} j_{!}^{\mathbb{4}} \mathbb{C}\right)^{\chi} .
$$

The WZW subsystem

This occurs for the WZW systems (these involve a particular choice of C).
Let $\theta \in \mathfrak{h}^{*}$ be the highest root, $\ddot{\theta} \in \mathfrak{h}$ the corresponding coroot. Fix (a level) $\ell \in\{1,2, \ldots\}$ and take $C=C_{\ell}$ with $C_{\ell} \in(\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$ characterized by $q_{C_{\ell}}(\theta)=(\rho(\breve{\theta})+1+\ell)^{-1}$.
Choose $e_{\theta} \in \mathfrak{g}_{\theta}$ a generator of the corresponding root space and let $\mathcal{E}_{\theta} \in \mathcal{O}_{U_{n}} \otimes_{\mathbb{C}} \operatorname{End}\left(V_{1} \otimes \cdots \otimes V_{n}\right)$ be defined by

$$
\mathcal{E}_{\theta}(\mathbf{z}):=\sum_{\nu=1}^{n} 1 \otimes \cdots \otimes z_{\nu} X_{\theta} \otimes \cdots \otimes 1 .
$$

WZW-subsystem

Proposition (Beilinson-Feigin)

Then the subsheaf of $\mathcal{O}_{U_{n}} \otimes \mathbf{V}^{\mathfrak{g}}$ defined by

$$
\mathcal{W}_{\ell}\left(V_{1}, \ldots, V_{n}\right):=\operatorname{ker}\left(\mathcal{E}_{\theta}^{1+\ell} \mid \mathcal{O}_{U_{n}} \otimes \mathbf{V}^{\mathfrak{g}}\right)
$$

is flat for $\nabla_{K Z}^{C_{\ell}}$ and hence defines a local subsystem $\mathbb{W}_{\ell}\left(V_{1}, \ldots, V_{n}\right) \subset \mathbb{K}^{\mathbb{Z}_{\ell}}\left(V_{1}, \ldots, V_{n}\right)$.
$\mathbb{W}_{\ell}\left(V_{1}, \ldots, V_{n}\right)$ is called the Wess-Zumino-Witten system of level ℓ.

A conjecture

Conjecture (1)

$\mathbb{W}_{\ell}\left(V_{1}, \ldots, V_{n}\right)$ is a unitary system
This would in fact follow from the truth of

Conjecture (2)

$\mathbb{W}_{\ell}\left(V_{1}, \ldots, V_{n}\right)$ maps under the embedding described above to the direct image of $\hat{p}_{*}^{\natural} \omega_{\hat{U}_{n, M}^{\natural} / U_{n}}$.

For the flatness of $\mathbb{W}_{\ell}\left(V_{1}, \ldots, V_{n}\right)$ would then make it a summand of a polarized rigid local system, purely of Hodge type ($m, 0$).
This last conjecture was proved by Ramadas in case $\mathfrak{g}=\mathfrak{s l}(2)$.

Serre presentation of \mathfrak{g}

Let $\left(c_{k, l}\right)_{k, l=1}^{r}$ be the Cartan matrix of \mathfrak{g} :
\mathfrak{g} has generators $e_{1}, \ldots, e_{r}, f_{1}, \ldots, f_{r}$ subject to the relations $\left[e_{k}, f_{l}\right]=0$ for $k \neq I$ and if we put $\check{\alpha}_{k}:=\left[e_{k}, f_{k}\right]$, then

$$
\left[\check{\alpha}_{k}, e_{l}\right]=c_{k, l} e_{l}, \quad\left[\check{\alpha}_{k}, f_{l}\right]=-c_{k, l} f_{l}, \quad\left[\check{\alpha}_{k}, \check{\alpha}_{l}\right]=0 .
$$

and also imposing the Serre relations

$$
\operatorname{ad}\left(f_{k}\right)^{1-c_{k, l} f_{l}}=0, \quad \operatorname{ad}\left(e_{k}\right)^{1-c_{k, l}} e_{l}=0 \quad(k \neq l)
$$

$\tilde{\mathfrak{g}}$: the Lie algebra that we get if we suppress only the last set of Serre relations.
$\mathfrak{h} \subset \mathfrak{g}$ is the Cartan subalgebra spanned by the $\check{\alpha}_{k}$'s (also a subalgebra of $\tilde{\mathfrak{g}}$).

Polydifferentials on a product of $\mathbb{P}^{11} s$

Fix a set \mathcal{M} (soon to be countably inifinite).
Let \mathcal{B} be the graded \mathbb{C}-vector space of the relative rational polydifferentials on $\left(\mathbb{P}^{1}\right)_{\mathbb{C}}^{\mathcal{M}}:\left(\mathbb{P}^{1}\right)^{\mathcal{M}} \times \mathbb{C} \rightarrow \mathbb{C}$ which is
\mathbb{C}-spanned by the forms

$$
\zeta_{I}(z):=\frac{d t_{i_{N}} d t_{i_{N-1}} \cdots d t_{i_{1}}}{\left(t_{i_{N}}-t_{i_{N-1}}\right) \cdots\left(t_{i_{2}}-t_{i_{1}}\right)\left(t_{i_{1}}-z\right)} .
$$

where $I=\left(i_{N}, i_{N-1}, \ldots, i_{1}\right)$ runs over the finite sequences in \mathcal{M} (we stipulate $\zeta_{\emptyset}=1$).
Notice that we get zero unless the sequence l is without repetition.

A shuffle algebra of polydifferentials

$\hat{\mathcal{B}}^{d}$: the space of (possibly infinite) sums of these relative polydifferentials of degree $N, \hat{\mathcal{B}}:=\oplus_{d=0}^{\infty} \hat{\mathcal{B}}^{d}$.

Lemma (Shuffle rule)

The graded vector space \mathcal{B} is closed under product (it is a shuffle algebra): for finite sequences in I and J in \mathcal{M},

$$
\zeta_{I} \zeta_{J}=\sum_{K \text { a shuffle of } I \text { and } J} \zeta_{K}
$$

Algebra of invariants in $\hat{\mathcal{B}}$

Now assume \mathcal{M} equipped with a $\operatorname{map} \Pi: \mathcal{M} \rightarrow\{1, \ldots, r\}$, $i \mapsto \bar{i}$ such that every fiber \mathcal{M}_{k} is countably infinite. The group $\mathfrak{S}_{\square}=\mathfrak{S}\left(\mathcal{M}_{1}\right) \times \cdots \times \mathfrak{S}\left(\mathcal{M}_{r}\right)$ acts in $\hat{\mathcal{V}}$. Additive generators for $\hat{\mathcal{V}}^{\mathfrak{S}_{\Pi}}$ are indexed by finite sequences S in $\{1, \ldots, r\}$:

$$
\zeta(S):=\sum_{\Pi(I)=S} \zeta_{1} .
$$

We will produce the irreducible highest weight representation of \mathfrak{g} with highest weight $\lambda \in \mathfrak{h}^{*}$ inside $\hat{\mathcal{B}}^{\mathfrak{G}}$ п with $1 \in \hat{\mathcal{B}}^{\mathfrak{G}} \mathfrak{I}_{\Pi}$ as highest weight vector.

The operators \tilde{f}_{k}

Let $\lambda \in \mathfrak{h}^{*}$. For $k \in\{1, \ldots, r\}$ define an operator \tilde{f}_{k} in the space of rational polydifferentials on $\left(\mathbb{P}^{1}\right)_{\mathbb{C}}^{\mathcal{M}}$ by

$$
\tilde{f}_{k}:=\sum_{i \in \mathcal{M}_{k}}\left(\frac{\lambda\left(\check{\alpha}_{k}\right) d t_{i}}{t_{i}-z}-\sum_{j \in \mathcal{M}-\{i\}} c_{k, \bar{j}} \frac{d t_{j} d t_{j}}{t_{i}-t_{j}} \iota_{\partial / \partial t_{j}}\right)
$$

Here $d t_{i}$ is the multiplication operator in the space of these polydifferentials and by $\iota_{\partial / \partial t_{i}}$ its adjoint (which acts in the ith tensor factor by sending $d t_{i}$ to 1 and 1 to 0). So for a finite subset $X \subset \mathcal{M}$, we have

$$
\tilde{f}_{k}\left(\prod_{x \in X} d t_{x}\right)=\sum_{i \in \mathcal{M}_{k} \backslash X}\left(\frac{\lambda\left(\check{\alpha}_{k}\right)}{t_{i}-z}-\sum_{x \in X} \frac{c_{k, \bar{x}}}{t_{i}-t_{x}}\right) d t_{i} \prod_{x \in X} d t_{x}
$$

The operators \tilde{e}_{k}

One checks with the help of the shuffle rule that

$$
\tilde{f}_{k}(\zeta(S))=\sum_{S=S^{\prime \prime} S^{\prime}}\left(\lambda\left(\check{\alpha}_{k}\right)-c_{k, S^{\prime}}\right) \zeta\left(S^{\prime \prime} k S^{\prime}\right)
$$

so \tilde{f}_{k} preserves $\hat{\mathcal{B}}^{\mathfrak{S} \pi}$.
Define $\tilde{e}_{k}: \hat{\mathcal{B}}^{\mathfrak{G}} \rightarrow \hat{\mathcal{B}}^{\mathfrak{S}_{n}}$ by

$$
\tilde{e}_{k}(\zeta(S)):= \begin{cases}\zeta\left(S^{\prime}\right) & \text { if } S=k S^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Has an interpretation as a residue taken at $t_{i}=\infty, i \in \mathcal{M}_{k}$.

Polydifferential realization of $\mathcal{V}(\lambda)$

Theorem

The operators $\tilde{e}_{k}, \tilde{f}_{k}, k=1, \ldots, r$, define a representation of $\tilde{\mathfrak{g}}$ on $\hat{\mathcal{B}}^{\mathfrak{\subseteq}}{ }^{\Pi}$ and $\tilde{\mathfrak{g}}$ acts on the $\tilde{\mathfrak{g}}$-submodule $\mathcal{V}(\lambda)$ generated by 1 through the irrep of \mathfrak{g} with highest weight λ and highest weight vector 1 .

Towards a tensor product of of irreps 1

Let $\lambda_{1}, \ldots, \lambda_{n}$ be dominant weights as before. Work now on

$$
\left(\mathbb{P}^{1}\right)_{\mathbb{C}^{n}}^{\mathcal{M}}:\left(\mathbb{P}^{1}\right)^{\mathcal{M}} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}
$$

For n sequences I_{1}, \ldots, I_{n} in \mathcal{M} we have the relative polydifferential

$$
\omega_{l_{1}}\left(z_{1}\right) \omega_{l_{2}}\left(z_{2}\right) \cdots \omega_{l_{n}}\left(z_{n}\right)
$$

on $\left(\mathbb{P}^{1}\right)_{\mathbb{C}^{n}}^{\mathcal{M}}\left(z_{1}, \ldots, z_{n}\right.$ are coordinates of $\left.\mathbb{C}^{n}\right)$. It is zero unless the concatenated sequence $I_{1} \cdots I_{n}$ is without repetition.

Towards a tensor product of of irreps 2

\mathcal{B}_{n} : the graded vector space spanned by these polydifferentials. $\hat{\mathcal{B}}_{n}=\oplus_{d} \hat{\mathcal{B}}_{n}^{d}$ with $\hat{\mathcal{B}}_{n}^{d}$ the completion of \mathcal{B}_{n}^{d} which allows for infinite sums.
Given n sequences $S^{\bullet}=\left(S_{1}, \ldots, S_{n}\right)$ in $\{1, \ldots, r\}$, we observe that

$$
\prod_{\nu=1}^{n} \zeta\left(S_{\nu}\right)\left(z_{\nu}\right)=\sum_{\substack{\bar{T}_{\nu}=S_{\nu} \\ \nu=1, \ldots, n}} \zeta_{l_{1}}\left(z_{1}\right) \cdots \zeta_{l_{n}}\left(z_{n}\right) \in \hat{\mathcal{B}}_{n}^{\mathbb{G}_{n}} .
$$

These elements form a \mathbb{C}-basis of $\hat{\mathcal{B}}_{n}^{\mathfrak{S}_{n}}$.

Towards a tensor product of irreps 3

So the above factorization defines an isomorphism

$$
\hat{\mathcal{B}}_{n}^{\mathfrak{S}_{\Pi}} \cong \hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \hat{\mathcal{B}}^{\mathfrak{S}_{\Pi}}
$$

It is clear that $\mathcal{V}\left(\lambda_{\bullet}\right)=\mathcal{V}\left(\lambda_{1}\right) \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathcal{V}\left(\lambda_{n}\right)$ is the smallest subspace of $\hat{\mathcal{B}}_{n}^{\mathfrak{S}_{n}}$ that contains 1 and is invariant under the operators $\tilde{f}_{k}^{(\nu)}$ and $\tilde{e}_{k}^{(\nu)}$. It is the tensor product of n highest weight representations.
It follows from the residue interpretation of \tilde{e}_{k} that:

Polydifferential realization of a tensor product of irreps

Theorem

The space of \mathfrak{g}-invariants $\mathcal{V}\left(\lambda_{\bullet}\right)^{\mathfrak{g}}$ is the space of degree m polydifferentials in $\mathcal{V}\left(\lambda_{\bullet}\right)_{m}$ that are regular along every hyperplane at infinity $\left(t_{i}=\infty\right), i \in \mathcal{M}$.

If we now choose $M \subset \mathcal{M}$ such that $\pi:=\Pi \mid M$, then we see that $\mathcal{V}\left(\lambda_{\bullet}\right)_{m}$ can be realized as a space of polydifferentials on $\mathbb{P}_{\mathbb{C}^{n}}^{M}$. This leads to the interpretation of the KZ system in terms of $U_{n, M} / U_{n}$ as given above.

