The automorphism group of $\bar{M}_{0, n}$

Massimiliano Mella

Dipartimento di Matematica
Università di Ferrara
"Perspectives on Algebraic Varieties"
Levico Terme, September 6-11, 2010

joint with Andrea Bruno

joint with Andrea Bruno

$\bar{M}_{0, n}:=\{$ stable rational curves with n marked points $\}$

joint with Andrea Bruno

$\bar{M}_{0, n}:=\{$ stable rational curves with n marked points\}

Today I am interested in the Automorphisms of $\bar{M}_{0, n}$.

Fulton's Conjecture

A permutation of the markings produces an automorphism of $\bar{M}_{0, n}$

Fulton's Conjecture

A permutation of the markings produces an automorphism of $\bar{M}_{0, n}$

Conjecture (Fulton)

when $n \geq 5$ these are the only automorphisms

Kapranov's construction

$\bar{M}_{0, n} \cong \overline{\left\{\begin{array}{c}\text { rational normal curves in } \mathbb{P}^{n-2} \\ \text { through } n \text { general points } \\ \left\{q_{1}, \ldots, q_{n}\right\}\end{array}\right\}}=: H_{q}$

Kapranov's construction

$\bar{M}_{0, n} \cong \overline{\left\{\begin{array}{c}\text { rational normal curves in } \mathbb{P}^{n-2} \\ \text { through } n \text { general points } \\ \left\{q_{1}, \ldots, q_{n}\right\}\end{array}\right\}}=: H_{q}$
fixing one of the points, say q_{1}, the general curve is uniquely determined by its tangent at q_{1}.

This gives a birational map

$$
\chi: \mathbb{P}^{n-3} \rightarrow \bar{M}_{0, n}
$$

where the domain represents the directions through q_{1},

This gives a birational map

$$
\chi: \mathbb{P}^{n-3} \rightarrow \bar{M}_{0, n}
$$

where the domain represents the directions through q_{1}, considering reducible curves in H_{q} it is easy to see that χ is not defined along the linear spaces spanned by the $(n-1)$ points associated to the lines $\left\langle q_{1}, q_{j}\right\rangle$ and it is defined elsewhere.

The iterated blow up

This is not enough to resolve the indeterminacy. Kapranov described the iterated blow up needed to resolve χ.

The iterated blow up

This is not enough to resolve the indeterminacy. Kapranov described the iterated blow up needed to resolve χ. This gives, for any choice of the point q_{i} i.e. of the marking, a well defined morphism

$$
f_{i}: \bar{M}_{0, n} \rightarrow \mathbb{P}^{n-3}
$$

The iterated blow up

This is not enough to resolve the indeterminacy. Kapranov described the iterated blow up needed to resolve χ. This gives, for any choice of the point q_{i} i.e. of the marking, a well defined morphism

$$
f_{i}: \bar{M}_{0, n} \rightarrow \mathbb{P}^{n-3}
$$

obtained via blowing up on a "dimension increasing" order the linear spaces spanned by $n-1$ points in general position in \mathbb{P}^{n-3}.

Definition

A Kapranov set $\mathcal{K} \subset \mathbb{P}^{n-3}$ is a set of $(n-1)$ linearly independent points in \mathbb{P}^{n-3}, labelled by a subset $I \subset\{1, \ldots n\}$.

Definition

A Kapranov set $\mathcal{K} \subset \mathbb{P}^{n-3}$ is a set of $(n-1)$ linearly independent points in \mathbb{P}^{n-3}, labelled by a subset $I \subset\{1, \ldots n\}$. To a Kapranov set is uniquely associated a birational morphism

$$
f_{i}: \bar{M}_{0, n} \rightarrow \mathbb{P}^{n-3}
$$

with $I \cup\{i\}=\{1, \ldots, n\}$, obtained via the iterated blow up described before, based on points of \mathcal{K}.

Standard Cremona Transformations

Standard Cremona Transformations

Standard Cremona Transformations

$\omega_{i j}$ is the standard Cremona transformation, centered on $\mathcal{K} \backslash\left\{p_{j}\right\}$, i.e. $\left(x_{0}, \ldots, x_{n-3}\right) \mapsto\left(x_{0}^{-1}, \ldots, x_{n-3}^{-1}\right)$.

Using Kapranov description we can study morphisms of $\bar{M}_{0, n}$ via the one they induce on \mathbb{P}^{n-3}.

Using Kapranov description we can study morphisms of $\bar{M}_{0, n}$ via the one they induce on \mathbb{P}^{n-3}.

$$
\begin{gathered}
\left.\bar{M}_{0, n} \xrightarrow[\substack{g}]{\mid f_{i}} \underset{\substack{\gamma}}{\mathbb{P}^{n-3}}\right\}
\end{gathered}
$$

Using Kapranov description we can study morphisms of $\bar{M}_{0, n}$ via the one they induce on \mathbb{P}^{n-3}.

$$
\begin{gathered}
\bar{M}_{0, n} \xrightarrow{g} \underset{\substack{f_{i} \\
\mathbb{P}^{n-3}}}{ } Y \\
\mathbb{P}^{n}
\end{gathered}
$$

Let us work out special cases particularly meaningful for us.

Forgetful maps

Forgetful maps

$$
\begin{array}{cc}
\bar{M}_{0, n} \xrightarrow{\phi_{1}} \bar{M}_{0, n-|I|} \\
\mid f_{j} & \mid f_{h} \\
\downarrow & \downarrow \\
\mathbb{P}^{n-3} & \mathbb{P}^{n-|I|-3}
\end{array}
$$

Forgetful maps

$$
\begin{aligned}
& \bar{M}_{0, n} \xrightarrow{\phi_{1}} \bar{M}_{0, n-|I|}
\end{aligned}
$$

where π_{l} is a linear projection if $j \notin I$.

Forgetful maps

$$
\begin{array}{cc}
\bar{M}_{0, n} \xrightarrow{\phi_{1}} \bar{M}_{0, n-|| |} \\
\mid f_{j} & \\
\downarrow & \mid f_{h} \\
\mathbb{P}^{n-3} & \stackrel{f_{1}}{\longrightarrow} \\
\mathbb{P}^{n-|l|-3}
\end{array}
$$

where $\pi_{\text {I }}$ is a linear projection if $j \notin I$.

Remark

The fibers of a map forgetting one marking are either lines through a point in \mathcal{K} or RNC through \mathcal{K}.

Permutations

The permutation automorphisms $\left\{2,1, j_{3}, \ldots, j_{n}\right\}$

Permutations

The permutation automorphisms $\left\{2,1, j_{3}, \ldots, j_{n}\right\}$

$$
\begin{aligned}
& \bar{M}_{0, n} \xrightarrow{\sigma} \bar{M}_{0, n}
\end{aligned}
$$

$\Sigma=\Omega \circ \omega_{12}$ where Ω is a projectivity.

Permutations

The permutation automorphisms $\left\{2,1, j_{3}, \ldots, j_{n}\right\}$

$$
\begin{aligned}
& \bar{M}_{0, n} \xrightarrow{\sigma} \bar{M}_{0, n}
\end{aligned}
$$

$\Sigma=\Omega \circ \omega_{12}$ where Ω is a projectivity.

Remark

Lines through the points in the Kapranov set \mathcal{K} are sent to either lines or RNC through \mathcal{K}

Our plan for Fulton's Conjecture is to prove that this Remark is true for an arbitrary automorphism $g \in \operatorname{Aut}\left(\bar{M}_{0, n}\right)$.

Our plan for Fulton's Conjecture is to prove that this Remark is true for an arbitrary automorphism $g \in \operatorname{Aut}\left(\bar{M}_{0, n}\right)$. To get this we aim to show that any fiber type morphism with connected fibers

$$
f: \bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1},
$$

is a "forgetful map".

Our plan for Fulton's Conjecture is to prove that this Remark is true for an arbitrary automorphism $g \in \operatorname{Aut}\left(\bar{M}_{0, n}\right)$. To get this we aim to show that any fiber type morphism with connected fibers

$$
f: \bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1},
$$

is a "forgetful map".
We approach this question studying more generally the diagrams

$$
\begin{aligned}
& \bar{M}_{0, n} \xrightarrow{f} \bar{M}_{0, r} \\
& \underset{\mathbb{P}^{n-3}}{\mid f_{j}} \stackrel{\phi}{\substack{\mid f_{h} \\
\downarrow \\
\mathbb{P}^{r-3}}}
\end{aligned}
$$

Pencils on $\bar{M}_{0, n}$

The first step is to consider a morphism with connected fibers

$$
f: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1} \cong \bar{M}_{0,4}
$$

Pencils on $\bar{M}_{0, n}$

The first step is to consider a morphism with connected fibers

$$
f: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1} \cong \bar{M}_{0,4}
$$

let $\mathcal{L}=f^{*}(\mathcal{O}(1))$ and $\mathcal{L}_{i}=f_{i *} \mathcal{L} \subset\left|\mathcal{O}\left(d_{i}\right)\right|$.

Pencils on $\bar{M}_{0, n}$

The first step is to consider a morphism with connected fibers

$$
f: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1} \cong \bar{M}_{0,4}
$$

let $\mathcal{L}=f^{*}(\mathcal{O}(1))$ and $\mathcal{L}_{i}=f_{i *} \mathcal{L} \subset\left|\mathcal{O}\left(d_{i}\right)\right|$. Then \mathcal{L}_{i} is a pencil of hypersurfaces without fixed components and with a very special Base Locus.

Using Kapranov's maps and the description of Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_{i}:=\left\{A_{1}, A_{2}\right\}$:

Using Kapranov's maps and the description of Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_{i}:=\left\{A_{1}, A_{2}\right\}$:

- for any $p_{j} \in \mathcal{K}$ mult $p_{j} A_{1}=$ mult $_{p_{j}} A_{2} ;$

Using Kapranov's maps and the description of
Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_{i}:=\left\{A_{1}, A_{2}\right\}$:

- for any $p_{j} \in \mathcal{K}$ mult $_{p_{j}} A_{1}=$ mult $_{p_{j}} A_{2} ;$
- there is a choice of $(n-3)$ points in \mathcal{K}, say $\left\{p_{j_{1}}, \ldots, p_{j_{n-3}}\right\}$, such that $\mathcal{L}_{i \mid\left\langle p_{j_{1}}, \ldots, p_{j_{n-3}}\right\rangle}$ is a pencil without fixed components;

Using Kapranov's maps and the description of
Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_{i}:=\left\{A_{1}, A_{2}\right\}$:

- for any $p_{j} \in \mathcal{K}$ mult $_{p_{j}} A_{1}=$ mult $_{p_{j}} A_{2} ;$
- there is a choice of $(n-3)$ points in \mathcal{K}, say $\left\{p_{j_{1}}, \ldots, p_{j_{n-3}}\right\}$, such that $\mathcal{L}_{i \mid\left\langle p_{j_{1}}, \ldots, p_{j_{n-3}}\right\rangle}$ is a pencil without fixed components;
- mult $p_{p_{j_{h}}} \mathcal{L}_{i}=$ mult $_{p_{j_{h}}} \mathcal{L}_{i \mid\left\langle p_{j_{1}}, \ldots, p_{j_{n-3}}\right\rangle}$

Using Kapranov's maps and the description of
Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_{i}:=\left\{A_{1}, A_{2}\right\}$:

- for any $p_{j} \in \mathcal{K}$ mult $_{p_{j}} A_{1}=$ mult $_{p_{j}} A_{2} ;$
- there is a choice of $(n-3)$ points in \mathcal{K}, say $\left\{p_{j_{1}}, \ldots, p_{j_{n-3}}\right\}$, such that $\mathcal{L}_{i \backslash\left\langle p_{j_{1}}, \ldots, p_{j_{n-3}}\right\rangle}$ is a pencil without fixed components;
- mult pa $_{j_{h}} \mathcal{L}_{i}=$ mult $_{p_{j_{h}}} \mathcal{L}_{i \mid\left\langle p_{j_{1}}, \ldots, p_{j_{n-3}}\right\rangle}$

With these properties it is easy to prove the following Theorem by induction on n.

Theorem
Let $f: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1}$ be a morphism then f can be factored via a forgetful map $\phi_{I}: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1}$.

Theorem
Let $f: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1}$ be a morphism then f can be factored via a forgetful map $\phi_{I}: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1}$.

This, plus a bit more work allows to prove, by induction on r, the following.

Theorem

Let $f: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1}$ be a morphism then f can be factored via a forgetful map $\phi_{I}: \bar{M}_{0, n} \rightarrow \mathbb{P}^{1}$.

This, plus a bit more work allows to prove, by induction on r, the following.

Theorem
Let $f: \bar{M}_{0, n} \rightarrow \bar{M}_{0, r}$ be a morphism with connected fibers then f, up to an automorphism of $\bar{M}_{0, r}$, is a forgetful $\operatorname{map} \phi_{J}: \bar{M}_{0, n} \rightarrow \bar{M}_{0, r}$.

We are now ready to prove Fulton's conjecture.

We are now ready to prove Fulton's conjecture. The result is classical and well known for $n=5 . \bar{M}_{0,5}$ is the del Pezzo surface of degree 5 .

We are now ready to prove Fulton's conjecture. The result is classical and well known for $n=5 . \bar{M}_{0,5}$ is the del Pezzo surface of degree 5 .
Let $g \in \operatorname{Aut}\left(\bar{M}_{0, n}\right)$ be an automorphism, and $\phi_{i}: \bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1}$ the map forgetting the i-th marking. By our result $\phi_{i} \circ g$ is associated to a map forgetting a marking, say j_{i}.

We are now ready to prove Fulton's conjecture. The result is classical and well known for $n=5 . \bar{M}_{0,5}$ is the del Pezzo surface of degree 5 .
Let $g \in \operatorname{Aut}\left(\bar{M}_{0, n}\right)$ be an automorphism, and $\phi_{i}: \bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1}$ the map forgetting the i-th marking. By our result $\phi_{i} \circ g$ is associated to a map forgetting a marking, say j_{i}.
This produces a morphism

$$
\chi: \operatorname{Aut}\left(\bar{M}_{0, n}\right) \rightarrow S_{n}
$$

We are now ready to prove Fulton's conjecture. The result is classical and well known for $n=5 . \bar{M}_{0,5}$ is the del Pezzo surface of degree 5 .
Let $g \in \operatorname{Aut}\left(\bar{M}_{0, n}\right)$ be an automorphism, and $\phi_{i}: \bar{M}_{0, n} \rightarrow \bar{M}_{0, n-1}$ the map forgetting the i-th marking. By our result $\phi_{i} \circ g$ is associated to a map forgetting a marking, say j_{i}.
This produces a morphism

$$
\chi: \operatorname{Aut}\left(\bar{M}_{0, n}\right) \rightarrow S_{n}
$$

given by

$$
g \mapsto\left\{j_{1}, \ldots, j_{n}\right\}
$$

It is easy to see that χ is surjective.

It is easy to see that χ is surjective. We have to analyze $\operatorname{ker}(\chi)$.

It is easy to see that χ is surjective.
We have to analyze $\operatorname{ker}(\chi)$. Namely we have to determine the automorphisms $g \in \operatorname{Aut}\left(\bar{M}_{0, n}\right)$ such that for any $i \in\{1, \ldots, n\}$

$$
\phi_{i} \circ g
$$

is associated to the forgetful map forgetting the i-th marking.

Let us look at it from the viewpoint of \mathbb{P}^{n-3}.

Let us look at it from the viewpoint of \mathbb{P}^{n-3}. We have a birational self map $\gamma_{n}: \mathbb{P}^{n-3} \rightarrow \mathbb{P}^{n-3}$, induced by $\mathcal{H}_{n} \subset|\mathcal{O}(d)|$ and a Kapranov set $\mathcal{K}=\left\{p_{1}, \ldots, p_{n-1}\right\}$ such that

- the general line through p_{i} is sent to a line through p_{i} i.e.
- the general line through p_{i} is sent to a line through p_{i} i.e.

$$
\text { mult }_{p_{i}} \mathcal{H}_{n}=d-1
$$

- the general line through p_{i} is sent to a line through p_{i} i.e.

$$
\text { mult }_{p_{i}} \mathcal{H}_{n}=d-1
$$

- the general RNC through \mathcal{K}, say Γ_{n}, is sent to a RNC through \mathcal{K} i.e.
- the general line through p_{i} is sent to a line through p_{i} i.e.

$$
\text { mult }_{p_{i}} \mathcal{H}_{n}=d-1
$$

- the general RNC through \mathcal{K}, say Γ_{n}, is sent to a RNC through \mathcal{K} i.e.

$$
(n-3) d-\sum_{i=1}^{n-1} \operatorname{mult}_{p_{i}} \mathcal{H}_{n}=n-3
$$

This yields

This yields

$$
n-3=(n-3) d-(n-1)(d-1)
$$

This yields

$$
n-3=(n-3) d-(n-1)(d-1)
$$

hence $d=1$ and γ_{n} is a projectivity fixing $n-1$ general points.

This yields

$$
n-3=(n-3) d-(n-1)(d-1)
$$

hence $d=1$ and γ_{n} is a projectivity fixing $n-1$ general points.
This is enough to prove that γ_{n} and henceforth g are the identity, giving the required

Theorem (Fulton's Conjecture)

$\operatorname{Aut}\left(\bar{M}_{0, n}\right) \cong S_{n}$, for $n \geq 5$.

With these ideas we are able to study other special classes of fiber type morphisms from $\bar{M}_{0, n}$, for either low n or low dimensional image or linear fibers...

