

The automorphism group of $\overline{M}_{0,n}$

Massimiliano Mella

Dipartimento di Matematica Università di Ferrara

"Perspectives on Algebraic Varieties" Levico Terme, September 6-11, 2010

università di ferrara

= √Q (~

ヘロト ヘロト ヘモト ヘモト

joint with Andrea Bruno

joint with Andrea Bruno

$\overline{M}_{0,n} := \{ \text{stable rational curves with n marked points} \}$

joint with Andrea Bruno

$\overline{M}_{0,n} := \{ \text{stable rational curves with n marked points} \}$

Today I am interested in the Automorphisms of $\overline{M}_{0,n}$.

The approach

Pencils on $\overline{M}_{0,n}$

The proof

Fulton's Conjecture

A permutation of the markings produces an automorphism of $\overline{M}_{0,n}$

イロト イポト イヨト イヨト

università di ferrara

= 900

Fulton's Conjecture

A permutation of the markings produces an automorphism of $\overline{M}_{0,n}$

Conjecture (Fulton)

when $n \ge 5$ these are the only automorphisms

Kapranov's construction

$\overline{M}_{0,n} \cong \left\{ \begin{array}{c} \text{rational normal curves in } \mathbb{P}^{n-2} \\ \text{through } n \text{ general points} \\ \{q_1, \dots, q_n\} \end{array} \right\} =: H_q$

università di ferrara

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kapranov's construction

$$\overline{M}_{0,n} \cong \overline{\left\{\begin{array}{c} \text{rational normal curves in } \mathbb{P}^{n-2} \\ \text{through } n \text{ general points} \\ \{q_1, \dots, q_n\} \end{array}\right\}} =: H_q$$

fixing one of the points, say q_1 , the general curve is uniquely determined by its tangent at q_1 .

This gives a birational map

$$\chi: \mathbb{P}^{n-3} \dashrightarrow \overline{M}_{0,n}$$

where the domain represents the directions through q_1 ,

This gives a birational map

$$\chi: \mathbb{P}^{n-3} \dashrightarrow \overline{M}_{0,n}$$

where the domain represents the directions through q_1 , considering reducible curves in H_q it is easy to see that χ is not defined along the linear spaces spanned by the (n-1) points associated to the lines $\langle q_1, q_j \rangle$ and it is defined elsewhere.

università di ferrara

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

The iterated blow up

This is not enough to resolve the indeterminacy. Kapranov described the iterated blow up needed to resolve χ .

The iterated blow up

This is not enough to resolve the indeterminacy. Kapranov described the iterated blow up needed to resolve χ . This gives, for any choice of the point q_i i.e. of the marking, a well defined morphism

$$f_i:\overline{M}_{0,n}\to\mathbb{P}^{n-3}$$

イロト イロト イヨト イヨト

The iterated blow up

This is not enough to resolve the indeterminacy. Kapranov described the iterated blow up needed to resolve χ . This gives, for any choice of the point q_i i.e. of the marking, a well defined morphism

$$f_i:\overline{M}_{0,n}\to\mathbb{P}^{n-3}$$

obtained via blowing up on a "dimension increasing" order the linear spaces spanned by n-1 points in general position in \mathbb{P}^{n-3} .

università di ferrara

E ∽Q@

The conjecture	Kapranov's construction	The approach	Pencils on M _{0,n}	The proof

Definition

A Kapranov set $\mathcal{K} \subset \mathbb{P}^{n-3}$ is a set of (n-1) linearly independent points in \mathbb{P}^{n-3} , labelled by a subset $l \subset \{1, \ldots n\}$.

The conjecture	Kapranov's construction	The approach	Pencils on $\overline{M}_{0, \mathbf{\textit{n}}}$	The proof

Definition

A Kapranov set $\mathcal{K} \subset \mathbb{P}^{n-3}$ is a set of (n-1) linearly independent points in \mathbb{P}^{n-3} , labelled by a subset $I \subset \{1, \dots, n\}$ To a Kapranov set is uniquely associated a birational morphism

$$f_i:\overline{M}_{0,n}\to\mathbb{P}^{n-3}$$

with $I \cup \{i\} = \{1, \ldots, n\}$, obtained via the iterated blow up described before, based on points of \mathcal{K} .

Sac

Standard Cremona Transformations

Standard Cremona Transformations

イロト イポト イヨト イヨト

Standard Cremona Transformations

 $\omega_{\it ii}$ is the standard Cremona transformation, centered on $\mathcal{K} \setminus \{p_j\}$, i.e. $(x_0, \ldots, x_{n-3}) \mapsto (x_0^{-1}, \ldots, x_{n-3}^{-1})$.

> università di ferrara э

Sac

Using Kapranov description we can study morphisms of $\overline{M}_{0,n}$ via the one they induce on \mathbb{P}^{n-3} .

Using Kapranov description we can study morphisms of $\overline{M}_{0,n}$ via the one they induce on \mathbb{P}^{n-3} .

Using Kapranov description we can study morphisms of $\overline{M}_{0,n}$ via the one they induce on \mathbb{P}^{n-3} .

Let us work out special cases particularly meaningful for us.

università di ferrara

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Forgetful maps

Forgetful maps

Forgetful maps

where π_I is a linear projection if $j \notin I$.

イロト イポト イヨト イヨト

Forgetful maps

$$\overline{M}_{0,n} \xrightarrow{\phi_{I}} \overline{M}_{0,n-|I|} \\
\downarrow^{f_{j}} \qquad \qquad \downarrow^{f_{h}} \\
\mathbb{P}^{n-3} \xrightarrow{\pi_{I}} \mathbb{P}^{n-|I|-3}$$

where π_I is a linear projection if $i \notin I$.

Remark

The fibers of a map forgetting one marking are either lines through a point in \mathcal{K} or RNC through \mathcal{K} .

Sac

The permutation automorphisms $\{2, 1, j_3, \ldots, j_n\}$

The permutation automorphisms $\{2, 1, j_3, \ldots, j_n\}$

 $\Sigma = \Omega \circ \omega_{12}$ where Ω is a projectivity.

The permutation automorphisms $\{2, 1, j_3, \ldots, j_n\}$

 $\Sigma = \Omega \circ \omega_{12}$ where Ω is a projectivity.

Remark

Lines through the points in the Kapranov set ${\cal K}$ are sent to either lines or RNC through ${\cal K}$

ferrara

イロト イポト イヨト イヨト

Our plan for Fulton's Conjecture is to prove that this Remark is true for an arbitrary automorphism $g \in Aut(\overline{M}_{0,n})$.

Our plan for Fulton's Conjecture is to prove that this Remark is true for an arbitrary automorphism $g \in Aut(\overline{M}_{0,n})$. To get this we aim to show that any fiber type morphism with connected fibers

$$f:\overline{M}_{0,n}\to\overline{M}_{0,n-1},$$

is a "forgetful map".

Our plan for Fulton's Conjecture is to prove that this Remark is true for an arbitrary automorphism $g \in Aut(\overline{M}_{0,n})$. To get this we aim to show that any fiber type morphism with connected fibers

$$f:\overline{M}_{0,n}\to\overline{M}_{0,n-1},$$

is a "forgetful map".

We approach this question studying more generally the diagrams

Sac

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

The first step is to consider a morphism with connected fibers

$$f:\overline{M}_{0,n}\to\mathbb{P}^1\cong\overline{M}_{0,4}$$

The first step is to consider a morphism with connected fibers

$$f: \overline{M}_{0,n} o \mathbb{P}^1 \cong \overline{M}_{0,4}$$

let $\mathcal{L} = f^*(\mathcal{O}(1))$ and $\mathcal{L}_i = f_{i*}\mathcal{L} \subset |\mathcal{O}(d_i)|$.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 - のへで

The first step is to consider a morphism with connected fibers

$$f:\overline{M}_{0,n}\to\mathbb{P}^1\cong\overline{M}_{0,4}$$

let $\mathcal{L} = f^*(\mathcal{O}(1))$ and $\mathcal{L}_i = f_{i*}\mathcal{L} \subset |\mathcal{O}(d_i)|$. Then \mathcal{L}_i is a pencil of hypersurfaces without fixed components and with a very special Base Locus.

università di ferrara

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー のく⊙

Using Kapranov's maps and the description of Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_i := \{A_1, A_2\}$:

Using Kapranov's maps and the description of Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_i := \{A_1, A_2\}$:

• for any $p_j \in \mathcal{K} \operatorname{mult}_{p_j} A_1 = \operatorname{mult}_{p_j} A_2$;

The conjecture Kapranov's construction The approach Pencils on $\overline{M}_{0,n}$ The proof

Using Kapranov's maps and the description of Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_i := \{A_1, A_2\}$:

- for any $p_j \in \mathcal{K}$ mult_{p_j} $A_1 =$ mult_{p_j} A_2 ;
- there is a choice of (n-3) points in \mathcal{K} , say $\{p_{j_1}, \ldots, p_{j_{n-3}}\}$, such that $\mathcal{L}_{i|\langle p_{j_1}, \ldots, p_{j_{n-3}}\rangle}$ is a pencil without fixed components;

The conjecture Kapranov's construction The approach Pencils on $\overline{M}_{0,n}$ The proof

Using Kapranov's maps and the description of Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_i := \{A_1, A_2\}$:

- for any $p_j \in \mathcal{K}$ mult_{p_j} $A_1 =$ mult_{p_j} A_2 ;
- there is a choice of (n-3) points in \mathcal{K} , say $\{p_{j_1}, \ldots, p_{j_{n-3}}\}$, such that $\mathcal{L}_{i|\langle p_{j_1}, \ldots, p_{j_{n-3}}\rangle}$ is a pencil without fixed components;

•
$$\operatorname{mult}_{p_{j_h}} \mathcal{L}_i = \operatorname{mult}_{p_{j_h}} \mathcal{L}_{i|\langle p_{j_1}, \dots, p_{j_{n-3}} \rangle}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The conjecture Kapranov's construction The approach Pencils on $\overline{M}_{0,n}$ The proof

Using Kapranov's maps and the description of Cremona Transformations it is possible to prove the following properties of $\mathcal{L}_i := \{A_1, A_2\}$:

- for any $p_j \in \mathcal{K}$ mult_{p_j} $A_1 =$ mult_{p_j} A_2 ;
- there is a choice of (n-3) points in \mathcal{K} , say $\{p_{j_1}, \ldots, p_{j_{n-3}}\}$, such that $\mathcal{L}_{i|\langle p_{j_1}, \ldots, p_{j_{n-3}}\rangle}$ is a pencil without fixed components;

• $\operatorname{mult}_{p_{j_h}} \mathcal{L}_i = \operatorname{mult}_{p_{j_h}} \mathcal{L}_{i|\langle p_{j_1}, \dots, p_{j_{n-3}} \rangle}$ With these properties it is easy to prove the following Theorem by induction on n.

università di ferrara

◆□▶ ◆□▶ ★□▶ ★□▶ ● ○ ○ ○

The conjecture	Kapranov's construction	The approach	Pencils on M _{0,n}	The proof

Theorem

Let $f : \overline{M}_{0,n} \to \mathbb{P}^1$ be a morphism then f can be factored via a forgetful map $\phi_I : \overline{M}_{0,n} \to \mathbb{P}^1$.

The conjecture	Kapranov s construction	ine approacn	Pencils on IVIO, n	The proof

Theorem

Let $f : \overline{M}_{0,n} \to \mathbb{P}^1$ be a morphism then f can be factored via a forgetful map $\phi_I : \overline{M}_{0,n} \to \mathbb{P}^1$.

This, plus a bit more work allows to prove, by induction on r, the following.

ine conjecture	Napranov s construction	ine approach	Pencils on IVIO, n	ine proof

Theorem

Let $f : \overline{M}_{0,n} \to \mathbb{P}^1$ be a morphism then f can be factored via a forgetful map $\phi_I : \overline{M}_{0,n} \to \mathbb{P}^1$.

This, plus a bit more work allows to prove, by induction on r, the following.

Theorem

Let $f : \overline{M}_{0,n} \to \overline{M}_{0,r}$ be a morphism with connected fibers then f, up to an automorphism of $\overline{M}_{0,r}$, is a forgetful map $\phi_J : \overline{M}_{0,n} \to \overline{M}_{0,r}$.

iniversità di ferrara

Sac

イロト イポト イヨト イヨト

We are now ready to prove Fulton's conjecture.

We are now ready to prove Fulton's conjecture. The result is classical and well known for n = 5. $\overline{M}_{0,5}$ is the del Pezzo surface of degree 5.

We are now ready to prove Fulton's conjecture. The result is classical and well known for n = 5. $\overline{M}_{0,5}$ is the del Pezzo surface of degree 5. Let $g \in \operatorname{Aut}(\overline{M}_{0,n})$ be an automorphism, and $\phi_i : \overline{M}_{0,n} \to \overline{M}_{0,n-1}$ the map forgetting the *i*-th marking. By our result $\phi_i \circ g$ is associated to a map forgetting a marking, say j_i .

・ロット 全部 マート・ キャー

We are now ready to prove Fulton's conjecture. The result is classical and well known for n = 5. $\overline{M}_{0,5}$ is the del Pezzo surface of degree 5. Let $g \in \operatorname{Aut}(\overline{M}_{0,n})$ be an automorphism, and $\phi_i : \overline{M}_{0,n} \to \overline{M}_{0,n-1}$ the map forgetting the *i*-th marking. By our result $\phi_i \circ g$ is associated to a map forgetting a marking, say j_i . This produces a morphism

$$\chi: \operatorname{Aut}(\overline{M}_{0,n}) \to S_n$$

E ∽Q@

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

università di ferrara

SQA

3

We are now ready to prove Fulton's conjecture. The result is classical and well known for n = 5. $\overline{M}_{0,5}$ is the del Pezzo surface of degree 5. Let $g \in \operatorname{Aut}(\overline{M}_{0,n})$ be an automorphism, and $\phi_i : \overline{M}_{0,n} \to \overline{M}_{0,n-1}$ the map forgetting the *i*-th marking. By our result $\phi_i \circ g$ is associated to a map forgetting a marking, say j_i . This produces a morphism

$$\chi: \operatorname{Aut}(\overline{M}_{0,n}) \to S_n$$

given by

$$g \mapsto \{j_1,\ldots,j_n\}$$

It is easy to see that χ is surjective.


```
It is easy to see that \chi is surjective.
We have to analyze ker(\chi).
```


It is easy to see that χ is surjective. We have to analyze ker (χ) . Namely we have to determine the automorphisms $g \in \operatorname{Aut}(\overline{M}_{0,n})$ such that for any $i \in \{1, \ldots, n\}$

$$\phi_i \circ g$$

is associated to the forgetful map forgetting the *i*-th marking.

università di ferrara

200

イロト イポト イモト イモト 二日

Let us look at it from the viewpoint of \mathbb{P}^{n-3} .

The conjecture	Kapranov's construction	The approach	Pencils on $\overline{M}_{0, \mathbf{\textit{n}}}$	The proof

Let us look at it from the viewpoint of \mathbb{P}^{n-3} . We have a birational self map $\gamma_n : \mathbb{P}^{n-3} \dashrightarrow \mathbb{P}^{n-3}$, induced by $\mathcal{H}_n \subset |\mathcal{O}(d)|$ and a Kapranov set $\mathcal{K} = \{p_1, \ldots, p_{n-1}\}$ such that

• the general line through p_i is sent to a line through p_i i.e.

 the general line through p_i is sent to a line through p_i i.e.

 $\operatorname{mult}_{p_i}\mathcal{H}_n=d-1$

 the general line through p_i is sent to a line through p_i i.e.

 $\operatorname{mult}_{p_i}\mathcal{H}_n=d-1$

 the general RNC through *K*, say Γ_n, is sent to a RNC through *K* i.e.

 the general line through p_i is sent to a line through p_i i.e.

$$\operatorname{\mathsf{mult}}_{p_i}\mathcal{H}_n=d-1$$

 the general RNC through *K*, say Γ_n, is sent to a RNC through *K* i.e.

$$(n-3)d - \sum_{i=1}^{n-1} \operatorname{mult}_{p_i} \mathcal{H}_n = n-3$$

wniversità di ferrara

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The conjecture	Kapranov's construction	The approach	Pencils on $\overline{M}_{0, \boldsymbol{n}}$	The proof

This yields

The conjecture	Kapranov's construction	The approach	Pencils on $\overline{M}_{0, \mathbf{\textit{n}}}$	The proof
This vi	elds			
THIS y	cius			
			$\lambda (1 = 1)$	
	n-3 = (n-3)	5)d — (n — 1)(d - 1)	

The conjecture	Kapranov's construction	The approach	Pencils on $\overline{M}_{0, \textit{\textbf{n}}}$	The proof
This yi	elds			
ý				
	n-3=(n-3)	S)d - (n - 1)	(d - 1)	
I			C · 1	
hence	$a=$ 1 and γ_n is	a projectivit	y fixing $n-1$	

general points.

The conjecture	Kapranov's construction	The approach	Pencils on $\overline{M}_{0, \mathbf{\textit{n}}}$	The proof
<u>.</u>				
This yi	elds			
	n-3 = (n-3)	d - (n - 1)	(d-1)	

hence d = 1 and γ_n is a projectivity fixing n - 1general points. This is enough to prove that γ_n and henceforth g are the identity, giving the required

Theorem (Fulton's Conjecture)
$$Aut(\overline{M}_{0,n}) \cong S_n$$
, for $n \ge 5$.

iniversità di ferrara

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー つくで

The conjecture	Kapranov's construction	The approach	Pencils on $\overline{M}_{0, \boldsymbol{n}}$	The proof

With these ideas we are able to study other special classes of fiber type morphisms from $\overline{M}_{0,n}$, for either low *n* or low dimensional image or linear fibers...

