Curves on irregular surfaces

Rita Pardini
(joint with M. Mendes Lopes and G.P. Pirola)

Università di Pisa
Levico Terme, September 6-11, 2010

Outline of the talk

(9) Irrational pencils
(2) The symmetric square of a curve
(3) Curves with $C^{2}>0$ and $p(C)=q$
4. Curves with $C^{2}>0$ and $p(C)$ "small"
$S:=$ smooth (minimal) complex projective surface of general type
$p_{g}:=p_{g}(S)=h^{0}\left(K_{S}\right)=h^{2}\left(\mathcal{O}_{S}\right)$, the geometric genus $q:=q(S)=h^{1}\left(\mathcal{O}_{S}\right)=h^{0}\left(\Omega_{S}^{1}\right)$, the irregularity.
$\left(\operatorname{Alb}(S)\right.$ and $\operatorname{Pic}^{0}(S)$ are dual abelian varieties of dimension $\left.q\right)$.
alb: $S \rightarrow \operatorname{Alb}(S)$, the Albanese map $\operatorname{albdim}(S)=\operatorname{dim} \operatorname{alb}(S)$, the Albanese dimension

An irrational pencil of genus $b>0$ is $f: S \rightarrow B$, with:

- B smooth curve of genus b;
- $f: S \rightarrow B$ morphism with connected fibers.

Recall:

(a) the existence of an irrational pencil of genus >1 is a topological property;
(b) S has a finite number of pencils of genus >1;
(c) if S is minimal the general fiber F of a pencil of genus >1 has genus $\leq \frac{K^{2}}{8}+1$;
(d) none of the above is true for pencils of genus 1 ("elliptic pencils").

Theorem (Castelnuovo-De Franchis)

S has an irrational pencil of genus >1 iff there exist
$\alpha, \beta \in H^{0}\left(\Omega_{S}^{1}\right)$ such that:
(i) α, β are independent
(ii) $\alpha \wedge \beta \equiv 0$.

Examples of irregular surfaces without irrational pencils:

- complete intersections of ample divisors in an abelian variety A : in this case $H^{2}\left(\mathcal{O}_{A}\right) \hookrightarrow H^{2}\left(\mathcal{O}_{S}\right)$, so $\wedge^{2} H^{0}\left(\Omega_{S}^{1}\right) \hookrightarrow H^{0}\left(K_{S}\right)$.
- the symmetric square of a curve of genus $q \geq 3$ (more on this later).

Remark: in both cases there may be elliptic pencils.

Assume S has no irrational pencil of genus >1; then:

- there are no simple tensors in the kernel of
$w: \wedge^{2} H^{0}\left(\Omega_{S}^{1}\right) \rightarrow H^{0}\left(K_{S}\right)$;
- w induces a map $G(2, q) \rightarrow \mathbb{P}\left(H^{0}\left(K_{S}\right)\right)$ which is finite onto its image.

Castelnuovo De Franchis inequality
If S has no irrational pencil of genus >1, then:

$$
p_{g}(S) \geq 2 q(S)-3
$$

Usually surfaces for which a general inequality is an equality can be classified.
This is not the case for surfaces S with $p_{g}=2 q-3$ that have no irrational pencil of genus >1.

- if $q=3$, then S is the symmetric product of a curve of genus 3 (Hacon, - and, independently, Pirola 2002). This is the only known example with;
- no example for $q=5$ (Mendes Lopes, Pirola, - 2010);
- if $q \geq 6$, then $\varphi_{K_{S}}$ is birational and $K_{S}^{2} \geq 7 \chi+2$ (Mendes Lopes, Pirola, - 2010).

So we look for a different approach.

Instead of concentrating on the numerical invariants, here we look at the simplest class of examples.

Let C be a smooth curve of genus $q \geq 3$. The symmetric square of C is defined as:

$$
S^{2}(C):=(C \times C) /<\iota>, \quad \text { where }(P, Q) \stackrel{\iota}{\mapsto}(Q, P) .
$$

Set $S:=S^{2}(C)$. Then:
(a) S is minimal of general type with $K_{S}^{2}=(q-1)(4 q-9)$;
(b) there are canonical identifications:

$$
H^{0}\left(\Omega_{S}^{1}\right)=H^{0}\left(\omega_{C}\right), \quad H^{0}\left(\omega_{S}\right)=\wedge^{2} H^{0}\left(\Omega_{S}^{1}\right), \quad \operatorname{Alb}(S)=J(C)
$$

(c) $p_{g}(S)=q(q-1) / 2, \quad q(S)=q, \quad \chi(S)=q(q-3) / 2+1$;
(d) S has no irrational pencil of genus >1;
(e) S has an elliptic pencil iff C has a map onto an elliptic curve.

There is another surface for which $\wedge^{2} H^{0}\left(\Omega_{S}^{1}\right) \rightarrow H^{0}\left(\omega_{S}\right)$ is an isomorphism: the Fano surface F of lines in a cubic threefold ($q=5, p_{g}=10, K^{2}=45$).
Conjecture (Debarre): the surface F and the symmetric square are the only surfaces that represent a minimal class in a PPAV.
The conjecture is proven, in a weaker form, in several cases:
$-q=4$ (Barton-Clemens, Ran),

- A Jacobian (Debarre),
- A the intermediate Jacobian of a generic cubic threefold (Debarre, Höring).

Question: does the isomorphism $\wedge^{2} H^{0}\left(\Omega_{S}^{1}\right) \rightarrow H^{0}\left(\omega_{S}\right)$ characterize these surfaces?

Here we take a different point of view, namely we look at curves of small genus of S with positive self-intersection in order to find a characterization.
Notation: given an irreducible curve (a 1 -connected divisor) C of S, we denote:

- $r(C):=\operatorname{dim}<\operatorname{alb}(C)>$;
- $g(C)$, the geometric genus of C;
- $p(C):=p_{a}(C)$, the arithmetic genus of C.

Remarks:

- of course: $r(C) \leq g(C) \leq p(C)$;
- if $C^{2}>0$, then $r(C)=q$.

Curves on a symmetric square

Let $S=S^{2}(C)$; for $P \in C$, we let $C_{P} \subset S$ be the image of $\{P\} \times C \subset C \times C$. Then:

- C_{P} is smooth, isomorphic to C (so $g(C)=q$);
- $C_{P}^{2}=1$;
- $r(C)=q$, namely $<\operatorname{alb}(C)>=\operatorname{Alb}(S)$;
- as P varies, the curves C_{P} form a 1 -dimensional algebraic system.

Theorem

Let S be an irregular surface of general type.
If S has a 1-connected effective divisor D with $p_{a}(D)=q$ and $D^{2}>0$, then S is birationally either:
(a) the product of two curves of genus ≥ 2; or
(b) the symmetric product $S^{2}(C)$, where C is a smooth curve of genus $q \geq 3$.
Furthermore, if D is 2 -connected, only case (b) occurs.

Remarks:

- we do not assume S minimal, nor $\operatorname{albdim}(S)=2$, nor D irreducible.
- the existence of an effective divisor with certain numerical properties determines the surface completely.

Outline of the proof:

Step 1 if there is a decomposition $D=A+B$ with $A B=1$, $p(A), p(B)>0$, then S is birational to a product of curves;
Step 2 if there is no decomposition as in Step 1, then we may assume that D is 2 -connected;
Step 3 if D is 2-connected, then D is smooth irreducible; Step 4 if D is smooth, there exists a d-dimensional family of curves algebraically equivalent to D, where $d:=D^{2}$;
Step 5 we conclude using the classification of systems of curves $\{D\}$ of dimension equal to D^{2} (Catanese-Ciliberto- Mendes Lopes 1998).

Step 4 in more detail:

C smooth of genus $q, d:=C^{2}>0$ and $\operatorname{albdim}(S)=2$. Let $V^{1}(S)=\left\{\eta \in \operatorname{Pic}^{0}(S) \mid h^{1}(\eta) \neq 0\right\}$ and $W(C)=\left\{\eta \in \operatorname{Pic}^{0}(C) \mid h^{0}((C+\eta) \mid C)>0\right\}$. Then:

- the map $\mathrm{Pic}^{0}(S) \rightarrow \operatorname{Pic}^{0}(C)$ is an isomorphism;
- let $0 \neq \eta \in \operatorname{Pic}^{0}(S)=\operatorname{Pic}^{0}(C)$; there is an exact sequence $0=H^{0}(\eta) \rightarrow H^{0}(C+\eta) \rightarrow H^{0}\left(\left.(C+\eta)\right|_{C}\right) \rightarrow H^{1}(\eta)$;
- $W(C)$ is irreducible and generates $J(C)=\mathrm{Alb}(S)$, while $V^{1}(S)$ is a union of proper abelian subvarieties of $\mathrm{Alb}(S)$, hence $W(C) \not \subset V^{1}(S)$.
- by the above remarks, there exists a d-dimensional family $\{D\}$ of curves algebraically equivalent to C.

Warning: the family $\{D\}$ may not contain the curve C !

Question: What about surfaces carrying a curve of arithmetic genus $p>q$ with p "small"? (and what is "small"?)

Observations:

- Steps 1-3 are based on a numerical analysis which is hopeless for $p>q$. So we focus on irreducible curves C.
- In Step 4 we need to control $V^{1}(S)$; for this we will assume that S has no irrational pencils, thus $\operatorname{dim} V^{1}(S) \leq 1$ and $0 \in V^{1}(S)$ is an isolated point;
- If $g(C)<2 q-1$ then $h^{0}(C)=1$ (Xiao 1987). So a reasonable meaning of " p small" is " $p<2 q-1$ ".

A Brill-Noether type result

S irregular without irrational pencils, $C=\sum C_{i}$ a reduced connected curve of S such that $\mathrm{Pic}^{0}\left(C_{i}\right) \hookrightarrow \mathrm{Pic}^{0}(S)$ for every i (e.g., C irreducible and $C^{2}>0$).

Set $d:=C^{2}$ and $\rho(C):=d+q-p(C)>0$.

Theorem

Assume that $K_{S} C \geq C^{2}>0$ and $\rho(C)>0$. If either $\rho(C)>1$ or C is not contained in the ramification divisor R of the Albanese map of S, then C moves in an algebraic family of dimension $\geq \rho(C)$.

Idea of proof:

Step 1 Generalize Fulton-Lazarsfeld description of the Brill-Noether loci to the following situation:

- $T \subseteq J(C)$ a subgroup such that $T \rightarrow J\left(C_{i}\right)$ has finite kernel for every i;
- $L \in \operatorname{Pic}(C)$ such that $\operatorname{deg} L \leq p-1$,

$$
W_{T}^{r}(L):=\left\{\eta \in T \mid h^{0}(L+\eta) \geq r+1\right\}
$$

Step 2 Take $T=\operatorname{Pic}^{0}(S), L=\mathcal{O}_{C}(C)$ and compare $W_{T}^{r}(L)$ and $V^{1}(S)$ as before. (Use the description of $V^{1}(S)$. If C is not contained in the ramification divisor R of alb, then $\left.0 \in W_{T}(L)\right)$.

Corollary

C an irreducible curve with $C^{2}>0$ and arithmetic genus p. Then:
(1) if $p<2 q-1$, then $C^{2} \leq p-\frac{q-3}{2}$;
(2) if C is a fixed component of $\left|K_{S}\right|$, then $C^{2} \leq p-q+1$.

Remarks:

(1) This is because by Xiao's result no curve numerically equivalent to C can move in a linear system;
(2) If the inequality fails, then there exists $\eta \in \operatorname{Pic}^{0}(S)$ such that $h^{1}(\eta)=0, h^{0}(C+\eta)>0$. Then $h^{0}\left(K_{S}+\eta\right) \geq h^{0}\left(K_{S}-C\right)=p_{g}(S)>\chi(S)$: contradiction!

Working harder, one obtains:

Theorem

If C is an irreducible curve with $C^{2}>0$ and arithmetic genus $p<2 q-1$ such that $C \not \subset R$, then:

$$
C^{2} \leq 3 \frac{p-q}{2}+2
$$

Remarks:

- to prove this we use a rigidity result for curves with an involution on a surface and "Clifford+";
- the inequality is very good when $p-q$ is small; for $p=q+1$ we get $C^{2} \leq 3$. It should be possible to get down to $C^{2} \leq 2$ with ad hoc arguments.

