
Irrational pencils
The symmetric square of a curve

Curves with C2
> 0 and p(C) = q

Curves with C2
> 0 and p(C) “small”

Curves on irregular surfaces

Rita Pardini
(joint with M. Mendes Lopes and G.P. Pirola)

Università di Pisa

Levico Terme, September 6-11, 2010

Rita Pardini (joint with M. Mendes Lopes and G.P. Pirola) Curves on irregular surfaces



Irrational pencils
The symmetric square of a curve

Curves with C2
> 0 and p(C) = q

Curves with C2
> 0 and p(C) “small”

Outline of the talk

1 Irrational pencils

2 The symmetric square of a curve

3 Curves with C2 > 0 and p(C) = q

4 Curves with C2 > 0 and p(C) “small”

Rita Pardini (joint with M. Mendes Lopes and G.P. Pirola) Curves on irregular surfaces



Irrational pencils
The symmetric square of a curve

Curves with C2
> 0 and p(C) = q

Curves with C2
> 0 and p(C) “small”

S:= smooth (minimal) complex projective surface of general
type

pg := pg(S) = h0(KS) = h2(OS), the geometric genus
q := q(S) = h1(OS) = h0(Ω1

S), the irregularity.
(Alb(S) and Pic0(S) are dual abelian varieties of dimension q).

alb : S → Alb(S), the Albanese map
albdim(S) = dim alb(S), the Albanese dimension
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An irrational pencil of genus b > 0 is f : S → B, with:

B smooth curve of genus b;

f : S → B morphism with connected fibers.

Recall:

(a) the existence of an irrational pencil of genus > 1 is a
topological property;

(b) S has a finite number of pencils of genus > 1;

(c) if S is minimal the general fiber F of a pencil of genus > 1
has genus ≤ K 2

8 + 1;

(d) none of the above is true for pencils of genus 1 (“elliptic
pencils”).
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Theorem (Castelnuovo–De Franchis)

S has an irrational pencil of genus > 1 iff there exist
α, β ∈ H0(Ω1

S) such that:
(i) α, β are independent
(ii) α ∧ β ≡ 0.

Examples of irregular surfaces without irrational pencils:

complete intersections of ample divisors in an abelian
variety A: in this case H2(OA) →֒ H2(OS), so
∧2H0(Ω1

S) →֒ H0(KS).

the symmetric square of a curve of genus q ≥ 3 (more on
this later).

Remark: in both cases there may be elliptic pencils.
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Assume S has no irrational pencil of genus > 1; then:

there are no simple tensors in the kernel of
w : ∧2 H0(Ω1

S) → H0(KS);

w induces a map G(2, q) → P(H0(KS)) which is finite onto
its image.

Castelnuovo De Franchis inequality

If S has no irrational pencil of genus > 1, then:

pg(S) ≥ 2q(S) − 3.
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Usually surfaces for which a general inequality is an equality
can be classified.
This is not the case for surfaces S with pg = 2q − 3 that have
no irrational pencil of genus > 1.

if q = 3, then S is the symmetric product of a curve of
genus 3 (Hacon, – and, independently, Pirola 2002). This
is the only known example with;

no example for q = 5 (Mendes Lopes, Pirola, – 2010);

if q ≥ 6, then ϕKS
is birational and K 2

S ≥ 7χ + 2 (Mendes
Lopes, Pirola, – 2010).

So we look for a different approach.
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Instead of concentrating on the numerical invariants, here we
look at the simplest class of examples.

Let C be a smooth curve of genus q ≥ 3. The symmetric
square of C is defined as:

S2(C) := (C × C)/ < ι >, where (P, Q)
ι

7→ (Q, P).
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Set S := S2(C). Then:

(a) S is minimal of general type with K 2
S = (q − 1)(4q − 9);

(b) there are canonical identifications:

H0(Ω1
S) = H0(ωC), H0(ωS) = ∧2H0(Ω1

S), Alb(S) = J(C)

(c) pg(S) = q(q − 1)/2, q(S) = q, χ(S) = q(q − 3)/2 + 1;

(d) S has no irrational pencil of genus >1;

(e) S has an elliptic pencil iff C has a map onto an elliptic
curve.
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There is another surface for which ∧2H0(Ω1
S) → H0(ωS) is an

isomorphism: the Fano surface F of lines in a cubic threefold
(q = 5, pg = 10, K 2 = 45) .

Conjecture (Debarre): the surface F and the symmetric square
are the only surfaces that represent a minimal class in a PPAV.

The conjecture is proven, in a weaker form, in several cases:
– q = 4 (Barton-Clemens, Ran),
– A Jacobian (Debarre),
– A the intermediate Jacobian of a generic cubic threefold
(Debarre, Höring).

Question: does the isomorphism ∧2H0(Ω1
S) → H0(ωS)

characterize these surfaces?
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Here we take a different point of view, namely we look at curves
of small genus of S with positive self-intersection in order to
find a characterization.

Notation: given an irreducible curve (a 1-connected divisor) C
of S, we denote:

r(C) := dim < alb(C) >;

g(C), the geometric genus of C;

p(C) := pa(C), the arithmetic genus of C.

Remarks:

of course: r(C) ≤ g(C) ≤ p(C);

if C2 > 0, then r(C) = q.
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Curves on a symmetric square

Let S = S2(C); for P ∈ C, we let CP ⊂ S be the image of
{P} × C ⊂ C × C. Then:

CP is smooth, isomorphic to C (so g(C) = q);

C2
P = 1;

r(C) = q, namely < alb(C) >= Alb(S);

as P varies, the curves CP form a 1-dimensional algebraic
system.
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Theorem

Let S be an irregular surface of general type.
If S has a 1-connected effective divisor D with pa(D) = q and
D2 > 0, then S is birationally either:

(a) the product of two curves of genus ≥ 2; or

(b) the symmetric product S2(C), where C is a smooth curve
of genus q ≥ 3.

Furthermore, if D is 2-connected, only case (b) occurs.

Remarks:

we do not assume S minimal, nor albdim(S) = 2, nor D
irreducible.

the existence of an effective divisor with certain numerical
properties determines the surface completely.
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Outline of the proof:

Step 1 if there is a decomposition D = A + B with AB = 1,
p(A), p(B) > 0, then S is birational to a product of curves;

Step 2 if there is no decomposition as in Step 1, then we may
assume that D is 2-connected;

Step 3 if D is 2-connected, then D is smooth irreducible;

Step 4 if D is smooth, there exists a d -dimensional family of
curves algebraically equivalent to D, where d := D2;

Step 5 we conclude using the classification of systems of curves
{D} of dimension equal to D2 (Catanese-Ciliberto- Mendes
Lopes 1998).
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Step 4 in more detail:

C smooth of genus q, d := C2 > 0 and albdim(S) = 2. Let
V 1(S) = {η ∈ Pic0(S)|h1(η) 6= 0} and
W (C) = {η ∈ Pic0(C)|h0((C + η)|C) > 0}. Then:

the map Pic0(S) → Pic0(C) is an isomorphism;

let 0 6= η ∈ Pic0(S) = Pic0(C); there is an exact sequence
0 = H0(η) → H0(C + η) → H0((C + η)|C) → H1(η);

W (C) is irreducible and generates J(C) = Alb(S), while
V 1(S) is a union of proper abelian subvarieties of Alb(S),
hence W (C) 6⊂ V 1(S).

by the above remarks, there exists a d -dimensional family
{D} of curves algebraically equivalent to C.

Warning: the family {D} may not contain the curve C!
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Question: What about surfaces carrying a curve of arithmetic
genus p > q with p “small”? (and what is “small”?)

Observations:

Steps 1–3 are based on a numerical analysis which is
hopeless for p > q. So we focus on irreducible curves C.

In Step 4 we need to control V 1(S); for this we will assume
that S has no irrational pencils, thus dim V 1(S) ≤ 1 and
0 ∈ V 1(S) is an isolated point;

If g(C) < 2q − 1 then h0(C) = 1 (Xiao 1987). So a
reasonable meaning of “p small” is “p < 2q − 1”.
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A Brill-Noether type result

S irregular without irrational pencils, C =
∑

Ci a reduced
connected curve of S such that Pic0(Ci) →֒ Pic0(S) for every i
(e.g., C irreducible and C2 > 0).
Set d := C2 and ρ(C) := d + q − p(C) > 0.

Theorem

Assume that KSC ≥ C2 > 0 and ρ(C) > 0. If either ρ(C) > 1 or
C is not contained in the ramification divisor R of the Albanese
map of S, then C moves in an algebraic family of dimension
≥ ρ(C).
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Idea of proof:

Step 1 Generalize Fulton–Lazarsfeld description of the
Brill-Noether loci to the following situation:

T ⊆ J(C) a subgroup such that T → J(Ci) has finite kernel
for every i;
L ∈ Pic(C) such that deg L ≤ p − 1,
W r

T (L) := {η ∈ T |h0(L + η) ≥ r + 1}

Step 2 Take T = Pic0(S), L = OC(C) and compare W r
T (L) and

V 1(S) as before. (Use the description of V 1(S). If C is not
contained in the ramification divisor R of alb, then
0 ∈ WT (L)).
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Corollary

C an irreducible curve with C2 > 0 and arithmetic genus p.
Then:

1 if p < 2q − 1, then C2 ≤ p − q−3
2 ;

2 if C is a fixed component of |KS|, then C2 ≤ p − q + 1.

Remarks:
1 This is because by Xiao’s result no curve numerically

equivalent to C can move in a linear system;
2 If the inequality fails, then there exists η ∈ Pic0(S) such

that h1(η) = 0, h0(C + η) > 0. Then
h0(KS + η) ≥ h0(KS − C) = pg(S) > χ(S): contradiction!
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Working harder, one obtains:

Theorem

If C is an irreducible curve with C2 > 0 and arithmetic genus
p < 2q − 1 such that C 6⊂ R, then:

C2 ≤ 3
p − q

2
+ 2.

Remarks:

to prove this we use a rigidity result for curves with an
involution on a surface and “Clifford+”;

the inequality is very good when p − q is small; for
p = q + 1 we get C2 ≤ 3. It should be possible to get down
to C2 ≤ 2 with ad hoc arguments.
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