Curves on irregular surfaces

Rita Pardini (joint with M. Mendes Lopes and G.P. Pirola)

Università di Pisa

Levico Terme, September 6-11, 2010

Outline of the talk

- 3 Curves with $C^2 > 0$ and p(C) = q
- 4 Curves with $C^2 > 0$ and p(C) "small"

S:= smooth (minimal) complex projective surface of general type

 $p_g := p_g(S) = h^0(K_S) = h^2(\mathcal{O}_S)$, the geometric genus $q := q(S) = h^1(\mathcal{O}_S) = h^0(\Omega_S^1)$, the *irregularity*. (Alb(S) and Pic⁰(S) are dual abelian varieties of dimension q). alb: $S \to Alb(S)$, the Albanese map

albdim(S) = dim alb(S), the Albanese dimension

An *irrational pencil* of genus b > 0 is $f: S \rightarrow B$, with:

- B smooth curve of genus b;
- $f: S \rightarrow B$ morphism with connected fibers.

Recall:

- (a) the existence of an irrational pencil of genus > 1 is a topological property;
- (b) S has a finite number of pencils of genus > 1;
- (c) if S is minimal the general fiber F of a pencil of genus > 1 has genus $\le \frac{K^2}{8} + 1$;
- (d) none of the above is true for pencils of genus 1 ("elliptic pencils").

Theorem (Castelnuovo–De Franchis)

S has an irrational pencil of genus > 1 iff there exist $\alpha, \beta \in H^0(\Omega^1_S)$ such that: (i) α, β are independent (ii) $\alpha \land \beta \equiv 0$.

Examples of irregular surfaces without irrational pencils:

- complete intersections of ample divisors in an abelian variety A: in this case H²(O_A) → H²(O_S), so ∧²H⁰(Ω¹_S) → H⁰(K_S).
- the symmetric square of a curve of genus q ≥ 3 (more on this later).

Remark: in both cases there may be elliptic pencils.

Assume S has no irrational pencil of genus > 1; then:

- there are no simple tensors in the kernel of w: ∧² H⁰(Ω¹_S) → H⁰(K_S);
- *w* induces a map G(2, q) → P(H⁰(K_S)) which is finite onto its image.

Castelnuovo De Franchis inequality

If S has no irrational pencil of genus > 1, then:

 $p_g(S) \ge 2q(S) - 3.$

Usually surfaces for which a general inequality is an equality can be classified.

This is not the case for surfaces S with $p_g = 2q - 3$ that have no irrational pencil of genus > 1.

- if q = 3, then S is the symmetric product of a curve of genus 3 (Hacon, – and, independently, Pirola 2002). This is the only known example with;
- no example for q = 5 (Mendes Lopes, Pirola, -2010);
- if q ≥ 6, then φ_{K_S} is birational and K_S² ≥ 7χ + 2 (Mendes Lopes, Pirola, 2010).

So we look for a different approach.

Instead of concentrating on the numerical invariants, here we look at the simplest class of examples.

Let *C* be a smooth curve of genus $q \ge 3$. The *symmetric* square of *C* is defined as:

 $S^2(C):=(C\times C)/<\iota>, \quad \text{where } \ (P,Q)\stackrel{\iota}{\mapsto}(Q,P).$

Set $S := S^2(C)$. Then:

(a) S is minimal of general type with K_S² = (q - 1)(4q - 9);
(b) there are canonical identifications:

$$H^0(\Omega^1_S) = H^0(\omega_C), \ H^0(\omega_S) = \wedge^2 H^0(\Omega^1_S), \ \operatorname{Alb}(S) = J(C)$$

- (c) $p_g(S) = q(q-1)/2$, q(S) = q, $\chi(S) = q(q-3)/2 + 1$;
- (d) S has no irrational pencil of genus >1;
- (e) S has an elliptic pencil iff C has a map onto an elliptic curve.

There is another surface for which $\wedge^2 H^0(\Omega^1_S) \to H^0(\omega_S)$ is an isomorphism: the Fano surface *F* of lines in a cubic threefold $(q = 5, p_g = 10, K^2 = 45)$.

Conjecture (Debarre): the surface F and the symmetric square are the only surfaces that represent a minimal class in a PPAV.

The conjecture is proven, in a weaker form, in several cases:

- -q = 4 (Barton-Clemens, Ran),
- A Jacobian (Debarre),

 A the intermediate Jacobian of a generic cubic threefold (Debarre, Höring).

Question: does the isomorphism $\wedge^2 H^0(\Omega^1_S) \to H^0(\omega_S)$ characterize these surfaces?

Here we take a different point of view, namely we look at curves of small genus of S with positive self-intersection in order to find a characterization.

Notation: given an irreducible curve (a 1-connected divisor) *C* of *S*, we denote:

- g(C), the geometric genus of C;
- $p(C) := p_a(C)$, the arithmetic genus of C.

- of course: $r(C) \leq g(C) \leq p(C)$;
- if $C^2 > 0$, then r(C) = q.

Curves on a symmetric square

Let $S = S^2(C)$; for $P \in C$, we let $C_P \subset S$ be the image of $\{P\} \times C \subset C \times C$. Then:

• C_P is smooth, isomorphic to C (so g(C) = q);

•
$$C_P^2 = 1;$$

- r(C) = q, namely $\langle alb(C) \rangle = Alb(S)$;
- as P varies, the curves C_P form a 1-dimensional algebraic system.

Theorem

Let S be an irregular surface of general type. If S has a 1-connected effective divisor D with $p_a(D) = q$ and $D^2 > 0$, then S is birationally either:

- (a) the product of two curves of genus \geq 2; or
- (b) the symmetric product $S^2(C)$, where C is a smooth curve of genus $q \ge 3$.

Furthermore, if D is 2-connected, only case (b) occurs.

- we do not assume S minimal, nor albdim(S) = 2, nor D irreducible.
- the existence of an effective divisor with certain numerical properties determines the surface completely.

Outline of the proof:

- Step 1 if there is a decomposition D = A + B with AB = 1, p(A), p(B) > 0, then S is birational to a product of curves;
- Step 2 if there is no decomposition as in Step 1, then we may assume that *D* is 2-connected;
- Step 3 if *D* is 2-connected, then *D* is smooth irreducible;
- Step 4 if *D* is smooth, there exists a *d*-dimensional family of curves algebraically equivalent to *D*, where $d := D^2$;
- Step 5 we conclude using the classification of systems of curves $\{D\}$ of dimension equal to D^2 (Catanese-Ciliberto- Mendes Lopes 1998).

Step 4 in more detail:

C smooth of genus $q, d := C^2 > 0$ and albdim(S) = 2. Let $V^1(S) = \{\eta \in Pic^0(S) | h^1(\eta) \neq 0\}$ and $W(C) = \{\eta \in Pic^0(C) | h^0((C + \eta) | C) > 0\}$. Then:

- the map $\text{Pic}^0(S) \to \text{Pic}^0(C)$ is an isomorphism;
- let $0 \neq \eta \in \operatorname{Pic}^{0}(S) = \operatorname{Pic}^{0}(C)$; there is an exact sequence $0 = H^{0}(\eta) \rightarrow H^{0}(C + \eta) \rightarrow H^{0}((C + \eta)|_{C}) \rightarrow H^{1}(\eta)$;
- W(C) is irreducible and generates J(C) = Alb(S), while V¹(S) is a union of proper abelian subvarieties of Alb(S), hence W(C) ⊄ V¹(S).
- by the above remarks, there exists a *d*-dimensional family {*D*} of curves algebraically equivalent to *C*.

Warning: the family $\{D\}$ may not contain the curve C!

Question: What about surfaces carrying a curve of arithmetic genus p > q with p "small"? (and what is "small"?)

Observations:

- Steps 1–3 are based on a numerical analysis which is hopeless for p > q. So we focus on irreducible curves C.
- In Step 4 we need to control V¹(S); for this we will assume that S has no irrational pencils, thus dim V¹(S) ≤ 1 and 0 ∈ V¹(S) is an isolated point;
- If g(C) < 2q − 1 then h⁰(C) = 1 (Xiao 1987). So a reasonable meaning of "p small" is "p < 2q − 1".

 $\label{eq:constraint} $$ Irrational pencils$$ The symmetric square of a curve Curves with $C^2 > 0$ and $p(C) = q$$ Curves with $C^2 > 0$ and $p(C)$ "small"$

A Brill-Noether type result

S irregular without irrational pencils, $C = \sum C_i$ a reduced connected curve of S such that $\operatorname{Pic}^0(C_i) \hookrightarrow \operatorname{Pic}^0(S)$ for every *i* (e.g., C irreducible and $C^2 > 0$). Set $d := C^2$ and $\rho(C) := d + q - \rho(C) > 0$.

Theorem

Assume that $K_SC \ge C^2 > 0$ and $\rho(C) > 0$. If either $\rho(C) > 1$ or *C* is not contained in the ramification divisor *R* of the Albanese map of *S*, then *C* moves in an algebraic family of dimension $\ge \rho(C)$.

 $\label{eq:constraint} $$ Irrational pencils$$ The symmetric square of a curve Curves with $C^2 > 0$ and $p(C) = q$$ Curves with $C^2 > 0$ and $p(C)$ "small"$

Idea of proof:

- Step 1 Generalize Fulton–Lazarsfeld description of the Brill-Noether loci to the following situation:
 - *T* ⊆ *J*(*C*) a subgroup such that *T* → *J*(*C_i*) has finite kernel for every *i*;
 - $L \in \operatorname{Pic}(C)$ such that $\deg L \leq p 1$, $W_T^r(L) := \{\eta \in T | h^0(L + \eta) \geq r + 1\}$

Step 2 Take $T = \text{Pic}^{0}(S)$, $L = \mathcal{O}_{C}(C)$ and compare $W_{T}^{r}(L)$ and $V^{1}(S)$ as before. (Use the description of $V^{1}(S)$. If *C* is not contained in the ramification divisor *R* of alb, then $0 \in W_{T}(L)$).

Corollary

C an irreducible curve with $C^2 > 0$ and arithmetic genus p. Then:

• if
$$p < 2q - 1$$
, then $C^2 \le p - \frac{q-3}{2}$;

2 if C is a fixed component of $|K_S|$, then $C^2 \le p - q + 1$.

- This is because by Xiao's result no curve numerically equivalent to C can move in a linear system;
- If the inequality fails, then there exists $\eta \in \text{Pic}^0(S)$ such that $h^1(\eta) = 0$, $h^0(C + \eta) > 0$. Then $h^0(K_S + \eta) \ge h^0(K_S C) = p_g(S) > \chi(S)$: contradiction!

Working harder, one obtains:

Theorem

If C is an irreducible curve with $C^2 > 0$ and arithmetic genus p < 2q - 1 such that C $\not\subset R$, then:

$$C^2 \leq 3\frac{p-q}{2}+2.$$

- to prove this we use a rigidity result for curves with an involution on a surface and "Clifford+";
- the inequality is very good when *p* − *q* is small; for *p* = *q* + 1 we get C² ≤ 3. It should be possible to get down to C² ≤ 2 with ad hoc arguments.