DERIVED EQUIVALENCE AND THE PICARDVARIETY

Mihnea Popa - Christian Schnell
Univ. of Illinois at Chicago

If $X=$ smooth projective variety over $k=\bar{k}$, denote

$$
\mathbf{D}(X):=\mathbf{D}^{b}(\operatorname{Coh}(X))
$$

the bounded derived category of coherent sheaves on X.
Central problem originating in mirror symmetry (now also birational geometry):

Given X and Y two smooth projective varieties with $\mathbf{D}(X) \simeq$ $\mathbf{D}(Y)$ (linear equivalence of triangulated categories), what is the relationship between basic numerical invariants of X and Y, or between geometric properties of X and Y ?

Known results (due to Bondal, Orlov, Kawamata): if $\mathbf{D}(X) \simeq$ $\mathbf{D}(Y)$, then

- $\operatorname{dim} X=\operatorname{dim} Y$.
- $\kappa(X)=\kappa(Y)$ (Kodaira dimension).
- $\nu(X)=\nu(Y)$ (numerical dimension).
- ω_{X} and ω_{Y} have the same (possibly ∞) order.
- ω_{X} is nef $\Longleftrightarrow \omega_{Y}$ is nef.
- $R(X) \simeq R(Y)$ as k-algebras, where $R(X):=\oplus_{m \geq 0} H^{0}\left(X, \omega_{X}^{\otimes m}\right)$ is the canonical ring. (This implies in particular that $P_{m}(X)=$ $P_{m}(Y)$ for all m, so $\kappa(X)=\kappa(Y)$, and reconstruction: if ω_{X} and ω_{Y} are ample or anti-ample, then $X \simeq Y$.)

On the other hand, there are plenty of examples of X and Y which are not birational, but such that $\mathbf{D}(X) \simeq \mathbf{D}(Y)$:

- a (non-principally polarized) abelian variety A and its dual \widehat{A} (Mukai).
- $S=K 3$ surface and M_{S} a moduli space of sheaves on S (another $K 3$) for well-chosen invariants (Mukai).
- elliptic surfaces (Bridgeland, Uehara,...).
- (strong) Calabi-Yau threefolds (physicists, Kuznetsov, BorisovCăldăraru)

Question: How about other fundamental topological or holomorphic invariants, like Betti numbers, Hodge numbers?

Conjecture (Kontsevich,...): If X and Y are (weak) CalabiYau manifolds with $\mathbf{D}(X) \simeq \mathbf{D}(Y)$, then

$$
h^{p, q}(X)=h^{p, q}(Y), \forall p, q .
$$

(so $b_{i}(X)=b_{i}(Y)$ for all i.)
More general question: Is this true for all X and Y such that $\mathbf{D}(X) \simeq \mathbf{D}(Y)$?

If X and Y are of general type, then the answer is yes, by combining two important results:

- $\mathbf{D}(X) \simeq \mathbf{D}(Y) \Longrightarrow X \sim_{K} Y$ (Kawamata).
- $X \sim_{K} Y \Longrightarrow h^{p, q}(X)=h^{p, q}(Y), \forall p, q$. (Kontsevich, Batyrev, Denef-Loeser)

Recall that $X \sim_{K} Y$ means that there exists a smooth birational model Z dominating X and Y

$$
f: Z \rightarrow X, g: Z \rightarrow Y \text { such that } f^{*} K_{X}=g^{*} K_{Y}
$$

Aside: The second result implies that Hodge numbers are invariant for birational Calabi-Yau manifolds, which are in fact also conjectured to be derived equivalent. This is known in dimension up to three:

- If X and Y are birational Calabi-Yau threefolds, then $\mathbf{D}(X) \simeq$ $\mathbf{D}(Y)$ (Bridgeland).

But, as we saw above, there are non-birational derived equivalent Calabi-Yau's.

Another general invariant: Hochschild (co)homology. (Kontsevich; Căldăraru, Orlov...) An invariant with no apparent birational geometry interpretation, but related to the deformation theory of derived categories, and with numerical consequences:

$$
\mathbf{D}(X) \cong \mathbf{D}(Y) \Longrightarrow H H(X) \cong H H(Y)
$$

where (j denotes the diagonal embedding of X):

$$
H H(X):=\bigoplus_{i, l} \operatorname{Ext}_{X \times X}^{i}\left(j_{*} \mathcal{O}_{X}, j_{*} \omega_{X}^{\otimes l}\right)
$$

and the induced isomorphism preserves the natural bigrading on $H H$. This contains the following statements:

- When $i=0$, we obtain the canonical ring $R(X)=\bigoplus_{l \geq 0} H H_{0, l}(X)$.
- When $l=0$ we obtain the Hochschild cohomology

$$
H H^{i}(X):=\operatorname{Ext}_{X \times X}^{i}\left(j_{*} \mathcal{O}_{X}, j_{*} \mathcal{O}_{X}\right) \cong \bigoplus_{p+q=i} H^{p}\left(X, \bigwedge^{q} T_{X}\right)
$$

where the last isomorphism is the Hochschild-Kostant-Rosenberg isomorphism for cohomology.

- When $l=1$ we obtain the Hochschild homology

$$
H H_{i}(X):=\operatorname{Ext}_{X \times X}^{i}\left(j_{*} \mathcal{O}_{X}, j_{*} \omega_{X}\right) \cong \bigoplus_{p+q=i} H^{p}\left(X, \bigwedge^{q} T_{X} \otimes \omega_{X}\right)
$$

where the last isomorphism is the Hochschild-Kostant-Rosenberg isomorphism for homology.

Remarks. (1) The isomorphism $H H^{1}(X) \cong H H^{1}(Y)$ is equivalent to

$$
H^{0}\left(X, T_{X}\right) \oplus H^{1}\left(X, \mathcal{O}_{X}\right) \cong H^{0}\left(Y, T_{Y}\right) \oplus H^{1}\left(Y, \mathcal{O}_{Y}\right)
$$

which in particular gives

$$
h^{0}\left(X, \Omega_{X}^{1}\right)+h^{0}\left(X, T_{X}\right)=h^{0}\left(Y, \Omega_{Y}^{1}\right)+h^{0}\left(Y, T_{Y}\right) .
$$

(2) Via Serre duality, the isomorphism $H H_{i}(X) \cong H H_{i}(Y)$ is equivalent to

$$
\bigoplus_{p-q=i} H^{p}\left(X, \Omega_{X}^{q}\right) \cong \bigoplus_{p-q=i} H^{p}\left(Y, \Omega_{Y}^{q}\right)
$$

so the sum of the Hodge numbers on the columns in the Hodge diamond is constant, i.e. for all i

$$
\sum_{p-q=i} h^{p, q}(X)=\sum_{p-q=i} h^{p, q}(Y) .
$$

An immediate calculation shows then the following:
Corollary. Assume that $\mathbf{D}(X) \cong \mathbf{D}(Y)$.
(i) If X and Y are surfaces, then $h^{p, q}(X)=h^{p, q}(Y)$, for all p, q.
(ii) If X and Y are threefolds, the same thing holds, except for

$$
2 h^{1,0}(X)+h^{2,1}(X)=2 h^{1,0}(Y)+h^{2,1}(Y)
$$

So the invariance of $h^{1,0}$ would imply the invariance of all Hodge numbers for threefolds. But of course $h^{1,0}(X)=q(X)=\operatorname{dim} \operatorname{Pic}^{0}(X)$.

Natural question becomes: if $\mathbf{D}(X) \simeq \mathbf{D}(Y)$, what is the relationship between $\operatorname{Pic}^{0}(X)$ and $\operatorname{Pic}^{0}(Y)$?

Since for an abelian variety A we have $\mathbf{D}(A) \simeq \mathbf{D}(\widehat{A})$, we cannot expect isomorphism. For abelian varieties the situation is in fact completely understood:

Theorem (Orlov). Let A and B be two abelian varieties. Then $\mathbf{D}(A) \cong \mathbf{D}(B)$ if and only if there exists an isometric isomorphism $\Psi: A \times \widehat{A} \cong B \times \widehat{B}$, i.e. with $\tilde{\Psi}=\Psi^{-1}$, where if

$$
\Psi=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right), \text { then } \tilde{\Psi}:=\left(\begin{array}{cc}
\widehat{\delta} & -\widehat{\beta} \\
-\widehat{\gamma} & \widehat{\alpha}
\end{array}\right)
$$

(In particular A and B are isogenous.)

Given this, the most we can hope for in general is
Conjecture. If $\mathbf{D}(X) \cong \mathbf{D}(Y)$, then $\mathbf{D}\left(\operatorname{Pic}^{0}(X)\right) \cong \mathbf{D}\left(\operatorname{Pic}^{0}(Y)\right)$.

Don't know how to prove this conjecture, but the main result is its principal consequence, equally good in applications.

Theorem (--Schnell). Let X and Y be smooth projective varieties such that $\mathbf{D}(X) \simeq \mathbf{D}(Y)$. Then
(1) $\operatorname{Pic}^{0}(X)$ and $\operatorname{Pic}^{0}(Y)$ are isogenous.
(2) $\operatorname{Pic}^{0}(X) \simeq \operatorname{Pic}^{0}(Y)$ unless X and Y are étale locally trivial fibrations over isogenous positive dimensional abelian varieties (hence $\left.\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{Y}\right)=0\right)$.
(3) In particular

$$
h^{0}\left(X, \Omega_{X}^{1}\right)=h^{0}\left(Y, \Omega_{Y}^{1}\right) \quad \text { and } \quad h^{0}\left(X, T_{X}\right)=h^{0}\left(Y, T_{Y}\right)
$$

Corollary. Let X and Y be smooth projective threefolds with $\mathbf{D}(X) \simeq \mathbf{D}(Y)$. Then

$$
h^{p, q}(X)=h^{p, q}(Y)
$$

for all p and q.

Other quick applications:

- Let X and Y be smooth projective fourfolds with $\mathbf{D}(X) \simeq$ $\mathbf{D}(Y)$. Then $h^{2,1}(X)=h^{2,1}(Y)$. If in addition $\operatorname{Aut}^{0}(X)$ is not affine, then $h^{2,0}(X)=h^{2,0}(Y)$ and $h^{3,1}(X)=h^{3,1}(Y)$.
- Simple example of classification use of the invariance of the irregularity:

If $\mathbf{D}(X) \simeq \mathbf{D}(Y)$, and X is an abelian variety, then so is Y (Huybrechts, Nieper-Wisschirchen).

Proof: By the invariance of Kodaira dimension we get $\kappa(Y)=0$, and by the above $q(Y)=\operatorname{dim} Y$. A result of Kawamata says that Y is then birational to an abelian variety B. But $\omega_{X} \simeq \mathcal{O}_{X}$, so derived invariance implies $\omega_{Y} \simeq \mathcal{O}_{Y}$ as well. Hence $Y \simeq B$.

Idea of proof of Theorem: use a result of Rouquier on the invariance of certain types of derived autoequivalences, and the theory of actions of non-affine algebraic groups.

Well-known result of Orlov: if $\Phi: \mathbf{D}(X) \rightarrow \mathbf{D}(Y)$ is an equivalence, then there exists an object $\mathcal{E} \in \mathbf{D}(X \times Y)$, unique up to isomorphism, such that Φ is the integral functor

$$
\Phi=\Phi_{\mathcal{E}}: \mathbf{D}(X) \longrightarrow \mathbf{D}(Y), \Phi_{\mathcal{E}}(\cdot)=\mathbf{R} p_{2_{*}}\left(p_{1}^{*}(\cdot) \stackrel{\mathbf{L}}{\otimes} \mathcal{E}\right)
$$

Theorem (Rouquier). Let $\Phi=\Phi_{\mathcal{E}}: \mathbf{D}(X) \rightarrow \mathbf{D}(Y)$ be an equivalence, induced by $\mathcal{E} \in \mathbf{D}(X \times Y)$. Then Φ induces an isomorphism of algebraic groups

$$
F: \operatorname{Aut}^{0}(X) \times \operatorname{Pic}^{0}(X) \simeq \operatorname{Aut}^{0}(Y) \times \operatorname{Pic}^{0}(Y)
$$

defined by:

$$
F(\varphi, L)=(\psi, M) \Longleftrightarrow \Phi_{\mathcal{E}} \circ \Phi_{(\mathrm{id}, \varphi)_{*} L} \cong \Phi_{(\mathrm{id}, \psi)_{*} M} \circ \Phi_{\mathcal{E}}
$$

(Notation: (id, $\varphi): X \rightarrow X \times X, x \mapsto(x, \varphi(x))$.)

Actions of non-affine algebraic groups. $G=$ connected algebraic group over a field. According to Chevalley's theorem:

$$
1 \longrightarrow \operatorname{Aff}(G) \longrightarrow G \longrightarrow \operatorname{Alb}(G) \longrightarrow 1
$$

where:

- $\operatorname{Aff}(G)=$ unique maximal connected affine subgroup of G
- $\operatorname{Alb}(G)=G / \operatorname{Aff}(G)$ is an abelian variety, which is the Albanese variety of G. (The map $G \rightarrow \operatorname{Alb}(G)$ is the Albanese map of G, i.e. the universal morphism to an abelian variety (Serre); it is locally trivial in the Zariski topology.)

Now let X be a smooth projective variety, and take $G \subset \operatorname{Aut}(X)$. G acts naturally on $\operatorname{Alb}(X)$, inducing a map of abelian varieties

$$
\operatorname{Alb}(G) \longrightarrow \operatorname{Alb}(X),
$$

with image contained in the Albanese image $\operatorname{alb}_{X}(X)$.
Theorem 1 (Nishi, Matsumura). The group G acts on $\operatorname{Alb}(X)$ by translations, and the kernel of the induced homomorphism $G \rightarrow \operatorname{Alb}(X)$ is affine. Consequently, the induced map $\operatorname{Alb}(G) \rightarrow$ $\operatorname{Alb}(X)$ has finite kernel.

Take now: $G:=\operatorname{Aut}^{0}(X)$ the connected component of the identity in $\operatorname{Aut}(X)$.

Note: By Chevalley + Rouquier, if $\operatorname{Aut}^{0}(X)$ and $\operatorname{Aut}^{0}(Y)$ are affine, then $\operatorname{Pic}^{0}(X) \simeq \operatorname{Pic}^{0}(Y)$. Otherwise general results of Brion imply the condition in part (b) of the Theorem (so the obstruction to isomorphism is the presence of abelian varieties!).

I will sketch a proof of $q(X)=q(Y)$. The isogeny statement uses similar methods, but is more technical.

Recall that by Rouquier's theorem there is an isomorphism of algebraic groups

$$
F: \operatorname{Aut}^{0}(X) \times \operatorname{Pic}^{0}(X) \simeq \operatorname{Aut}^{0}(Y) \times \operatorname{Pic}^{0}(Y)
$$

Lemma. $F(\varphi, L)=(\psi, M)$ is equivalent to having an isomorphism

$$
p_{1}^{*} L \otimes(\varphi \times \mathrm{id})^{*} \mathcal{E} \simeq p_{2}^{*} M \otimes(\mathrm{id} \times \psi)_{*} \mathcal{E}
$$

on the product $X \times Y$.

If this isomorphism sends $\operatorname{Aut}^{0}(X)$ to $\operatorname{Aut}^{0}(Y)$ and $\operatorname{Pic}^{0}(X)$ to $\operatorname{Pic}^{0}(Y)$, we're done. Otherwise we take advantage of the mixing between the two.

Consider the induced map

$$
\pi: \operatorname{Pic}^{0}(X) \rightarrow \operatorname{Aut}^{0}(Y), \quad \beta(L)=p_{1}(F(\mathrm{id}, L))
$$

and let $A=\operatorname{Im} \pi$, an abelian variety which acts on Y.
Fix a point $(x, y) \in \operatorname{Supp} \mathcal{E}$, where \mathcal{E} is the kernel of the FourierMukai equivalence. Take the orbit map

$$
f: A \longrightarrow Y=\{x\} \times Y, a \rightarrow(x, a \cdot y)
$$

By the Nishi-Matsumura theorem we have that the induced map $A \rightarrow \operatorname{Alb}(Y)$ has finite kernel, which gives that the pull-back map

$$
f^{*}: \operatorname{Pic}^{0}(Y) \longrightarrow \operatorname{Pic}^{0}(A)
$$

is surjective.

Define $\mathcal{F}=\left(\operatorname{id}_{x} \times f\right)^{*} \mathcal{E} \in \mathbf{D}(A)$. The relation in the Lemma above can be translated into the following

$$
t_{a}^{*} \mathcal{F} \otimes f^{*} M \cong \mathcal{F}
$$

where $a \in A$ is the point corresponding to the automorphism ψ. $(F(\mathrm{id}, L)=(\psi, M)$.$) This makes every cohomology sheaf \mathcal{H}^{i}(\mathcal{F})$ into a semihomogeneous vector bundle on A, which implies by a simple calculation that

$$
\operatorname{dim} \operatorname{Ker} \pi \leq \operatorname{dim} \operatorname{Ker} f^{*}
$$

By the above this gives

$$
q(X)-\operatorname{dim} A=\operatorname{dim} \operatorname{Ker} \pi \leq \operatorname{dim} \operatorname{Ker} f^{*}=q(Y)-q(A)
$$

i.e. $q(X) \leq q(Y)$.

- More refined properties of semi-homogeneous vector bundles due to Mukai lead to the isogeny statement.

HAPPY BIRTHDAY ALESSANDRO, CIRO, FABRIZIO!

