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If X = smooth projective variety over k = k, denote

D(X) := Db(Coh(X))

the bounded derived category of coherent sheaves on X.

Central problem originating in mirror symmetry (now also bira-
tional geometry):

Given X and Y two smooth projective varieties with D(X) �
D(Y ) (linear equivalence of triangulated categories), what is the
relationship between basic numerical invariants of X and Y , or
between geometric properties of X and Y ?

Known results (due to Bondal, Orlov, Kawamata):

• dim X = dim Y .

• κ(X) = κ(Y ) (Kodaira dimension).

• ν(X) = ν(Y ) (numerical dimension).

• ωX and ωY have the same (possibly ∞) order.

• ωX is nef ⇐⇒ ωY is nef.

• R(X) � R(Y ) as k-algebras, where R(X) := ⊕m≥0H
0(X,ω⊗m

X )
is the canonical ring. (This implies in particular that κ(X) =
κ(Y ) and reconstruction: if ωX and ωY are ample or anti-ample,
then X � Y .)

On the other hand, there are plenty of examples of X and Y

which are not birational, but such that D(X) � D(Y ):

• a (non-principally polarized) abelian variety A and its dual �A
(Mukai).

• S = K3 surface and MS a moduli space of sheaves on S (an-
other K3) for well-chosen invariants (Mukai).

• elliptic surfaces (Bridgeland, Uehara,...).

• (strong) Calabi-Yau threefolds (physicists, Borisov-Căldăraru,
Kuznetsov)

Question: How about other fundamental topological or holo-
morphic invariants, like Betti numbers, Hodge numbers?
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Question: How about other fundamental topological or holo-
morphic invariants, like Betti numbers, Hodge numbers?

Conjecture (Kontsevich,...): If X and Y are (weak) Calabi-
Yau manifolds with D(X) � D(Y ), then

h
p,q(X) = h

p,q(Y ), ∀p, q.

(so bi(X) = bi(Y ) for all i.)

More general question: Is this true for all X and Y such that
D(X) � D(Y )?

Remark: If X and Y are of general type, then the answer is yes,
by combining two important results:

• D(X) � D(Y ) =⇒ X ∼K Y (Kawamata).

• X ∼K Y =⇒ h
p,q(X) = h

p,q(Y ),∀p, q. (Kontsevich, Batyrev,
Denef-Loeser)

The second result implies that Hodge numbers are invariant for
birational Calabi-Yau manifolds, which are in fact also conjec-
tured to be derived equivalent. This is known in dimension up
to three:

• If X and Y are birational Calabi-Yau threefolds, then D(X) �
D(Y ) (Bridgeland).

But, as we saw above, there are non-birational derived equivalent
Calabi-Yau’s.

Another general invariant: Hochschild (co)homology. (Kont-
sevich; Căldăraru, Orlov...) An invariant with no apparent bira-
tional geometry interpretation, but with numerical consequences:

D(X) ∼= D(Y ) =⇒ HH(X) ∼= HH(Y ),

where (j denotes the diagonal embedding of X):

HH(X) :=
�

i,l

Exti
X×X

�
j∗OX , j∗ω

⊗l
X

�

and the induced isomorphism preserves the natural bigrading on
HH. This contains the following statements:

•When i = 0, we obtain the canonical ring R(X) =
�

l≥0 HH0,l(X).
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HH
i
(X) := Ext

i
X×X

�
j∗OX , j∗OX
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�

p+q=i

H
p
(X,

q�
TX),

where the last isomorphism is the Hochschild-Kostant-Rosenberg

isomorphism for cohomology.

• When l = 1 we obtain the Hochschild homology

HHi(X) := Ext
i
X×X

�
j∗OX , j∗ωX

� ∼=
�

p+q=i

H
p
(X,

q�
TX ⊗ ωX),
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isomorphism for homology.

Remarks. (1) The isomorphism HH
1
(X) ∼= HH

1
(Y ) is equiv-

alent to

H
0
(X, TX)⊕H

1
(X,OX)

∼= H
0
(Y, TY )⊕H

1
(Y,OY ),

which in particular gives

h
0
(X,Ω1

X) + h
0
(X, TX) = h

0
(Y,Ω1

Y ) + h
0
(Y, TY ).

(2) Via Serre duality, the isomorphism HHi(X) ∼= HHi(Y ) is

equivalent to
�

p−q=i

H
p
(X,Ωq

X)
∼=

�

p−q=i

H
p
(Y,Ωq

Y ).

so the sum of the Hodge numbers on the columns in the Hodge

diamond is constant, i.e. for all i
�

p−q=i

h
p,q
(X) =

�

p−q=i

h
p,q
(Y ).
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sevich; Căldăraru, Orlov...) An invariant with no apparent bi-
rational geometry interpretation, but related to the deformation
theory of derived categories, and with numerical consequences:

D(X) ∼= D(Y ) =⇒ HH(X) ∼= HH(Y ),

where (j denotes the diagonal embedding of X):

HH(X) :=
�

i,l

ExtiX×X

�
j∗OX , j∗ω

⊗l
X

�

and the induced isomorphism preserves the natural bigrading on
HH. This contains the following statements:

•When i = 0, we obtain the canonical ringR(X) =
�

l≥0 HH0,l(X).

• When l = 0 we obtain the Hochschild cohomology

HH
i(X) := ExtiX×X

�
j∗OX , j∗OX

� ∼=
�

p+q=i

H
p(X,

q�
TX),

where the last isomorphism is the Hochschild-Kostant-Rosenberg
isomorphism for cohomology.

• When l = 1 we obtain the Hochschild homology

HHi(X) := ExtiX×X

�
j∗OX , j∗ωX

� ∼=
�

p+q=i

H
p(X,

q�
TX ⊗ ωX),

where the last isomorphism is the Hochschild-Kostant-Rosenberg
isomorphism for homology.

Remarks. (1) The isomorphism HH
1(X) ∼= HH

1(Y ) is equiv-
alent to

H
0(X, TX)⊕H

1(X,OX) ∼= H
0(Y, TY )⊕H

1(Y,OY ),

which in particular gives

h
0(X,Ω1

X) + h
0(X, TX) = h

0(Y,Ω1
Y ) + h

0(Y, TY ).

(2) Via Serre duality, the isomorphism HHi(X) ∼= HHi(Y ) is
equivalent to

�

p−q=i

H
p(X,Ωq

X)
∼=

�

p−q=i

H
p(Y,Ωq

Y ).

so the sum of the Hodge numbers on the columns in the Hodge
diamond is constant, i.e. for all i

�

p−q=i

h
p,q(X) =

�

p−q=i

h
p,q(Y ).

Friday, September 17, 2010



Another general invariant: Hochschild (co)homology. (Kont-
sevich; Căldăraru, Orlov...) An invariant with no apparent bi-
rational geometry interpretation, but related to the deformation
theory of derived categories, and with numerical consequences:

D(X) ∼= D(Y ) =⇒ HH(X) ∼= HH(Y ),

where (j denotes the diagonal embedding of X):

HH(X) :=
�

i,l

ExtiX×X

�
j∗OX , j∗ω

⊗l
X

�

and the induced isomorphism preserves the natural bigrading on
HH. This contains the following statements:

•When i = 0, we obtain the canonical ringR(X) =
�

l≥0 HH0,l(X).

• When l = 0 we obtain the Hochschild cohomology

HH
i(X) := ExtiX×X

�
j∗OX , j∗OX

� ∼=
�

p+q=i

H
p(X,

q�
TX),

where the last isomorphism is the Hochschild-Kostant-Rosenberg
isomorphism for cohomology.

• When l = 1 we obtain the Hochschild homology

HHi(X) := ExtiX×X

�
j∗OX , j∗ωX

� ∼=
�

p+q=i

H
p(X,

q�
TX ⊗ ωX),

where the last isomorphism is the Hochschild-Kostant-Rosenberg
isomorphism for homology.

Remarks. (1) The isomorphism HH
1(X) ∼= HH

1(Y ) is equiv-
alent to

H
0(X, TX)⊕H

1(X,OX) ∼= H
0(Y, TY )⊕H

1(Y,OY ),

which in particular gives

h
0(X,Ω1

X) + h
0(X, TX) = h

0(Y,Ω1
Y ) + h

0(Y, TY ).

(2) Via Serre duality, the isomorphism HHi(X) ∼= HHi(Y ) is
equivalent to

�

p−q=i

H
p(X,Ωq

X)
∼=

�

p−q=i

H
p(Y,Ωq

Y ).

so the sum of the Hodge numbers on the columns in the Hodge
diamond is constant, i.e. for all i

�

p−q=i

h
p,q(X) =

�

p−q=i

h
p,q(Y ).

Friday, September 17, 2010



An immediate calculation shows then the following:

Corollary. Assume that D(X) ∼= D(Y ).

(i) If X and Y are surfaces, then hp,q(X) = hp,q(Y ), for all p, q.

(ii) If X and Y are threefolds, the same thing holds, except for

2h1,0(X) + h2,1(X) = 2h1,0(Y ) + h2,1(Y ).

So the invariance of h1,0 would imply the invariance of all Hodge
numbers for threefolds. But of course h1,0(X) = q(X) = dim Pic0(X).

Natural question becomes: if D(X) � D(Y ), what is the
relationship between Pic0(X) and Pic0(Y )?

Since for an abelian variety A we have D(A) � D( �A), we cannot
expect isomorphism. For abelian varieties the situation is in fact
completely understood:

Theorem (Orlov). Let A and B be two abelian varieties. Then
D(A) ∼= D(B) if and only if there exists an isometric isomor-
phism Ψ : A× �A ∼= B × �B, i.e. with Ψ̃ = Ψ−1, where if

Ψ =

�
α β
γ δ

�
, then Ψ̃ :=

� �δ −�β
−�γ �α

�
.

(In particular A and B are isogenous.)

Given this, the most we can hope for in general is

Conjecture. IfD(X) ∼= D(Y ), thenD(Pic0(X)) ∼= D(Pic0(Y )).

Don’t know how to prove this conjecture, but the main result is
its principal consequence, equally good in applications.

Theorem (−, Schnell). Let X and Y be smooth projective vari-
eties such that D(X) � D(Y ). Then

(1) Pic0(X) and Pic0(Y ) are isogenous.

(2) Pic0(X) � Pic0(Y ) unless X and Y are étale locally trivial
fibrations over isogenous positive dimensional abelian varieties
(hence χ(OX) = χ(OY ) = 0).

(3) In particular

h0(X,Ω1
X) = h0(Y,Ω1

Y ) and h0(X, TX) = h0(Y, TY ).
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Theorem (−-Schnell). Let X and Y be smooth projective va-
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Corollary. Let X and Y be smooth projective threefolds with
D(X) � D(Y ). Then

hp,q(X) = hp,q(Y )

for all p and q.

Other quick applications:

• Let X and Y be smooth projective fourfolds with D(X) �
D(Y ). Then h2,1(X) = h2,1(Y ). If in addition Aut0(X) is not
affine, then h2,0(X) = h2,0(Y ) and h3,1(X) = h3,1(Y ).

• Simple example of classification use of the invariance of the
irregularity:

If D(X) � D(Y ), and X is an abelian variety, then so is Y
(Huybrechts, Nieper-Wisschirchen).

Proof: By the invariance of Kodaira dimension we get κ(Y ) = 0,
and by the above q(Y ) = dimY . A result of Kawamata says that
Y is then birational to an abelian variety B. But ωX � OX , so
derived invariance implies ωY � OY as well. Hence Y � B.

Idea of proof of Theorem: use a result of Rouquier on the invari-
ance of certain types of derived autoequivalences, and the theory
of actions of non-affine algebraic groups.

Well-known result of Orlov: if Φ : D(X) → D(Y ) is an equiva-
lence, then there exists an object E ∈ D(X × Y ), unique up to
isomorphism, such that Φ is the integral functor

Φ = ΦE : D(X) −→ D(Y ), ΦE(·) = Rp2∗(p
∗
1(·)

L
⊗ E).
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(X)× Pic

0
(X) � Aut

0
(Y )× Pic

0
(Y )

defined by:

F (ϕ, L) = (ψ,M) ⇐⇒ ΦE ◦ Φ(id,ϕ)∗L
∼= Φ(id,ψ)∗M ◦ ΦE .

(Notation: (id,ϕ) : X → X ×X, x �→ (x,ϕ(x)).)

Actions of non-affine algebraic groups. G = connected al-

gebraic group over a field. According to Chevalley’s theorem:

1 −→ Aff(G) −→ G −→ Alb(G) −→ 1

where:

• Aff(G) = unique maximal connected affine subgroup of G

• Alb(G) = G/Aff(G) is an abelian variety, which is the Albanese

variety of G. (The map G → Alb(G) is the Albanese map of G,

i.e. the universal morphism to an abelian variety (Serre); it is

locally trivial in the Zariski topology.)

Now let X be a smooth projective variety, and take G ⊂ Aut(X).

G acts naturally on Alb(X), inducing a map of abelian varieties

Alb(G) −→ Alb(X),

with image contained in the Albanese image albX(X).

Theorem 1 (Nishi-Matsumura). The group G acts on Alb(X)

by translations, and the kernel of the induced homomorphism

G → Alb(X) is affine. Consequently, the induced map Alb(G) →
Alb(X) has finite kernel.

Take now: G := Aut
0
(X) the connected component of the iden-

tity in Aut(X).
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Idea of proof of Theorem: use a result of Rouquier on the invari-

ance of certain types of derived autoequivalences, and the theory

of actions of non-affine algebraic groups.

Well-known result of Orlov: if Φ : D(X) → D(Y ) is an equiva-

lence, then there exists an object E ∈ D(X × Y ), unique up to

isomorphism, such that Φ is the integral functor

Φ = ΦE : D(X) −→ D(Y ), ΦE(·) = Rp2∗(p
∗
1(·)

L
⊗ E).

Theorem (Rouquier). Let Φ = ΦE : D(X) → D(Y ) be an

equivalence, induced by E ∈ D(X × Y ). Then Φ induces an

isomorphism of algebraic groups

F : Aut
0
(X)× Pic

0
(X)) � Aut

0
(Y )× Pic

0
(Y )

defined by:

F (ϕ, L) = (ψ,M) ⇐⇒ ΦE ◦ Φ(id,ϕ)∗L
∼= Φ(id,ψ)∗M ◦ ΦE .

(Notation: (id,ϕ) : X → X ×X, x �→ (x,ϕ(x)).)

Actions of non-affine algebraic groups. G = connected al-

gebraic group over a field. According to Chevalley’s theorem:

1 −→ Aff(G) −→ G −→ Alb(G) −→ 1

where:

• Aff(G) = unique maximal connected affine subgroup of G

• Alb(G) = G/Aff(G) is an abelian variety, which is the Albanese

variety of G. (The map G → Alb(G) is the Albanese map of G,

i.e. the universal morphism to an abelian variety (Serre); it is

locally trivial in the Zariski topology.)

Now let X be a smooth projective variety, and take G ⊂ Aut(X).

Note that G acts naturally on Alb(X). The action of G on

Alb(X) induces a map of abelian varieties

Alb(G) −→ Alb(X),

with image contained in the Albanese image albX(X).

Theorem 1 (Nishi-Matsumura). The group G acts on Alb(X)

by translations, and the kernel of the induced homomorphism

G → Alb(X) is affine. Consequently, the induced map Alb(G) →
Alb(X) has finite kernel.

We take now for G the connected component of the identity

GX := Aut
0
(X) in Aut(X), and let a(X) be the dimension of the
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6Theorem (Rouquier). Let Φ = ΦE : D(X) → D(Y ) be an

equivalence, induced by E ∈ D(X × Y ). Then Φ induces an

isomorphism of algebraic groups

F : Aut
0
(X)× Pic

0
(X) � Aut

0
(Y )× Pic

0
(Y )

defined by:

F (ϕ, L) = (ψ,M) ⇐⇒ ΦE ◦ Φ(id,ϕ)∗L
∼= Φ(id,ψ)∗M ◦ ΦE .

(Notation: (id,ϕ) : X → X ×X, x �→ (x,ϕ(x)).)

Actions of non-affine algebraic groups. G = connected al-

gebraic group over a field. According to Chevalley’s theorem:

1 −→ Aff(G) −→ G −→ Alb(G) −→ 1

where:

• Aff(G) = unique maximal connected affine subgroup of G

• Alb(G) = G/Aff(G) is an abelian variety, which is the Albanese

variety of G. (The map G → Alb(G) is the Albanese map of G,

i.e. the universal morphism to an abelian variety (Serre); it is

locally trivial in the Zariski topology.)

Now let X be a smooth projective variety, and take G ⊂ Aut(X).

G acts naturally on Alb(X), inducing a map of abelian varieties

Alb(G) −→ Alb(X),

with image contained in the Albanese image albX(X).

Theorem 1 (Nishi, Matsumura). The groupG acts on Alb(X)

by translations, and the kernel of the induced homomorphism

G → Alb(X) is affine. Consequently, the induced map Alb(G) →
Alb(X) has finite kernel.

Take now: G := Aut
0
(X) the connected component of the iden-

tity in Aut(X).

Note: By Chevalley + Rouquier, if Aut
0
(X) and Aut

0
(Y ) are

affine, then Pic
0
(X) � Pic

0
(Y ). Otherwise general results of

Brion imply the condition in part (b) of the Theorem (so the

obstruction to isomorphism is the presence of abelian varieties!).

I will sketch a proof of q(X) = q(Y ). The isogeny statement uses

similar methods, but is more technical.
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I will sketch a proof of q(X) = q(Y ). The isogeny statement uses

similar methods, but is more technical.

Recall that by Rouquier’s theorem there is an isomorphism of

algebraic groups

F : Aut
0
(X)× Pic

0
(X) � Aut

0
(Y )× Pic

0
(Y )

Lemma. F (ϕ, L) = (ψ,M) is equivalent to having an isomor-

phism

p∗1L⊗ (ϕ× id)
∗E � p∗2M ⊗ (id× ψ)∗E

on the product X × Y .

If this isomorphism sends Aut
0
(X) to Aut

0
(Y ) and Pic

0
(X) to

Pic
0
(Y ), we’re done. Otherwise we take advantage of the mixing

between the two.
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Consider the induced map

π : Pic0(X) → Aut0(Y ), β(L) = p1
�
F (id, L)

�
,

and let A = Im π, an abelian variety which acts on Y .

Fix a point (x, y) ∈ Supp E , where E is the kernel of the Fourier-
Mukai equivalence. Take the orbit map

f : A −→ Y = {x}× Y, a → (x, a · y).

By the Nishi-Matsumura theorem we have that the induced map
A → Alb(Y ) has finite kernel, which gives that the pull-back
map

f ∗ : Pic0(Y ) −→ Pic0(A)

is surjective.
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Consider the induced map

π : Pic0(X) → Aut0(Y ), β(L) = p1
�
F (id, L)

�
,

and let A = Im π, an abelian variety which acts on Y .

Fix a point (x, y) ∈ Supp E , where E is the kernel of the Fourier-
Mukai equivalence. Take the orbit map

f : A −→ Y = {x}× Y, a → (x, a · y).

By the Nishi-Matsumura theorem we have that the induced map
A → Alb(Y ) has finite kernel, which gives that the pull-back
map

f ∗ : Pic0(Y ) −→ Pic0(A)

is surjective.

Define F = (idx × f)∗E ∈ D(A). The relation in the Lemma
above can be translated into the following

t∗aF ⊗ f ∗M ∼= F

where a ∈ A is the point corresponding to the automorphism ψ.
(F (id, L) = (ψ,M).) This makes every cohomology sheaf Hi(F)
into a semihomogeneous vector bundle on A, which implies
by a simple calculation that

dim Ker π ≤ dim Ker f ∗.

By the above this gives

q(X)− dim A = dim Ker π ≤ dim Ker f ∗ = q(Y )− q(A)

i.e. q(X) ≤ q(Y ).

• More refined properties of semi-homogeneous vector bundles
due to Mukai lead to the isogeny statement.
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