Varieties n-covered by curved of degree δ

Francesco Russo

Università degli Studi di Catania

Definitions and notation

- Joint work with Luc Pirio.

Definitions and notation

- Joint work with Luc Pirio.
- X denotes an irreducible projective (or proper) complex variety.

Definitions and notation

- Joint work with Luc Pirio.
- X denotes an irreducible projective (or proper) complex variety.
- $\operatorname{dim}(X)=r+1 \Longleftrightarrow X=X^{r+1}$.

Definitions and notation

Remarks

- $p_{1}, \ldots, p_{n} \in X$
$n \geq 2$ general points

Definitions and notation

Remarks

$$
\begin{aligned}
& p_{1}, \ldots, p_{n} \in X \\
& n \geq 2 \text { general points }
\end{aligned}
$$

$$
\exists C=C_{p_{1}, \ldots, p_{n}}
$$

$$
\Longrightarrow \quad \text { irreducible curve : }
$$

Definitions and notation

Remarks

$$
\begin{aligned}
& p_{1}, \ldots, p_{n} \in X \\
& n \geq 2 \text { general points }
\end{aligned}
$$

$$
\exists C=C_{p_{1}, \ldots, p_{n}}
$$

irreducible curve :

$$
p_{1}, \ldots, p_{n} \in C
$$

Definitions and notation

Remarks

$$
\begin{aligned}
& p_{1}, \ldots, p_{n} \in X \\
& n \geq 2 \text { general points }
\end{aligned} \Longrightarrow \quad \begin{aligned}
& \exists C=C_{p_{1}, \ldots, p_{n}} \\
& \text { irreducible curve }: \\
& p_{1}, \ldots, p_{n} \in C
\end{aligned}
$$

- if we put restrictions on C natural obstructions appear.

Definitions and notation

Remarks

$\begin{array}{ll} & p_{1}, \ldots, p_{n} \in X \\ & n \geq 2 \text { general points }\end{array}$

$$
\exists C=C_{p_{1}, \ldots, p_{n}}
$$

$$
n \geq 2 \text { general points } \quad \Longrightarrow \quad \text { irreducible curve : }
$$

$$
p_{1}, \ldots, p_{n} \in C
$$

- if we put restrictions on C natural obstructions appear.
- $\begin{aligned} & n=2 \& \\ & C \text { rational curve }\end{aligned} \Longleftrightarrow$ X rationally connected variety (dubbed $R C$).

Definitions and notation

Theorem (Kollár-Miyaoka-Mori)

$\exists C=C_{p_{1}, \ldots, p_{n}} \subseteq X$ rational curve
(1) $X R C \Longleftrightarrow$ passing through $n \geq 2$
general points $p_{1}, \ldots, p_{n} \in X$

Definitions and notation

Theorem (Kollár-Miyaoka-Mori)

$$
\exists C=C_{p_{1}, \ldots, p_{n}} \subseteq X \text { rational curve }
$$

(1) $X R C \Longleftrightarrow$ passing through $n \geq 2$
general points $p_{1}, \ldots, p_{n} \in X$

$$
X^{r+1} R C \quad \exists C \subseteq X \text { SMOOTH rational curve }
$$

(2) SMOOTH \Longrightarrow passing through $n \geq 2$

$$
r \geq 2
$$

$$
\text { general points } p_{1}, \ldots, p_{n} \in X
$$

Definitions and notation

Theorem (Kollár-Miyaoka-Mori)

$$
\exists C=C_{p_{1}, \ldots, p_{n}} \subseteq X \text { rational curve }
$$

(1) $X R C \Longleftrightarrow$ passing through $n \geq 2$
general points $p_{1}, \ldots, p_{n} \in X$

$$
X^{r+1} R C \quad \exists C \subseteq X \text { SMOOTH rational curve }
$$

(2) SMOOTH \Longrightarrow passing through $n \geq 2$ $r \geq 2 \quad$ general points $p_{1}, \ldots, p_{n} \in X$
$X^{r+1} R C$
(3) SMOOTH
$\Longrightarrow \begin{aligned} & \exists f: C \rightarrow X \text { EMBEDDING: } \\ & p_{1}, \ldots, p_{n} \in f(C)\end{aligned}$
C any SMOOTH curve

Definitions and notation

Definition

Fixed $n \geq 2, \delta \geq n-1$ and an embedding $X \subset \mathbb{P}^{N}$

Definitions and notation

Definition

Fixed $n \geq 2, \delta \geq n-1$ and an embedding $X \subset \mathbb{P}^{N}$
$X \subset \mathbb{P}^{N}$
n-covered by curves of degree δ

Definitions and notation

Definition

Fixed $n \geq 2, \delta \geq n-1$ and an embedding $X \subset \mathbb{P}^{N}$

$$
\begin{array}{ll}
X \subset \mathbb{P}^{N} & \exists C=C_{p_{1}, \ldots, p_{n} \subseteq X} \subseteq \\
n \text {-covered by curves } \Longleftrightarrow & \text { through } n \geq 2 \text { general points } \\
\text { of degree } \delta & \text { with } \operatorname{deg}(C)=\delta .
\end{array}
$$

Definitions and notation

Definition

Fixed $n \geq 2, \delta \geq n-1$ and an embedding $X \subset \mathbb{P}^{N}$

$$
\begin{array}{ll}
X \subset \mathbb{P}^{N} & \exists C=C_{p_{1}, \ldots, p_{n} \subseteq X} \subseteq X \\
n \text {-covered by curves } \Longleftrightarrow & \text { through } n \geq 2 \text { general points } \\
\text { of degree } \delta & \text { with } \operatorname{deg}(C)=\delta .
\end{array}
$$

In this case we shall use the notation :

$$
X=X(n, \delta) \subset \mathbb{P}^{N}
$$

Examples/reinterpretation of known results

We shall also assume $X \subseteq \mathbb{P}^{N}$ non-degenerate.

Examples/reinterpretation of known results

We shall also assume $X \subseteq \mathbb{P}^{N}$ non-degenerate.

Examples

- $X=X^{r+1}(2,1) \subset \mathbb{P}^{N} \Longleftrightarrow N=r+1$ and $X=\mathbb{P}^{r+1}$;

Examples/reinterpretation of known results

We shall also assume $X \subseteq \mathbb{P}^{N}$ non-degenerate.

Examples

- $X=X^{r+1}(2,1) \subset \mathbb{P}^{N} \Longleftrightarrow N=r+1$ and $X=\mathbb{P}^{r+1}$;
- $X=X^{r+1}(3,2) \subset \mathbb{P}^{N} \Longleftrightarrow \begin{aligned} & \text { (a) } N=r+2 \\ & \text { (b) } X^{r+1} \subset \mathbb{P}^{r+2} \text { quadric ; }\end{aligned}$

Examples/reinterpretation of known results

We shall also assume $X \subseteq \mathbb{P}^{N}$ non-degenerate.

Examples

$$
\begin{aligned}
& \text { - } X=X^{r+1}(2,1) \subset \mathbb{P}^{N} \Longleftrightarrow N=r+1 \text { and } X=\mathbb{P}^{r+1} \text {; } \\
& \text { - } X=X^{r+1}(3,2) \subset \mathbb{P}^{N} \Longleftrightarrow \\
& \text { (a) } N=r+2 \\
& \text { (b) } X^{r+1} \subset \mathbb{P}^{r+2} \text { quadric; } \\
& \text { - } X=X^{r+1}(n, n-1) \subset \mathbb{P}^{N} \\
& N=r+n-1 \\
& X^{r+1} \subset \mathbb{P}^{r+n-1} \\
& \operatorname{deg}(X)=n-1 \\
& \text { (minimal degree) }
\end{aligned}
$$

Pirio-Trepréau bound

$$
\begin{aligned}
& \text { Theorem (Pirio-Trepréau, 2009) } \\
& \text { Let } X=X^{r+1}(n, \delta) \subset \mathbb{P}^{N} \text {. Then } \\
& \qquad N \leq \bar{\pi}(r, n, \delta)-1=\pi(r, n, \delta+r(n-1)+2)-1,
\end{aligned}
$$

Pirio-Trepréau bound

Theorem (Pirio-Trepréau, 2009)
Let $X=X^{r+1}(n, \delta) \subset \mathbb{P}^{N}$. Then

$$
N \leq \bar{\pi}(r, n, \delta)-1=\pi(r, n, \delta+r(n-1)+2)-1,
$$

where

$$
\pi(r, n, d)=\sum_{\sigma \geq 0}\binom{\sigma+r-1}{\sigma}(\max \{0, d-(\sigma+r)(n-1)-1\})
$$

Pirio-Trepréau bound

Theorem (Pirio-Trepréau, 2009)
Let $X=X^{r+1}(n, \delta) \subset \mathbb{P}^{N}$. Then

$$
N \leq \bar{\pi}(r, n, \delta)-1=\pi(r, n, \delta+r(n-1)+2)-1,
$$

where

$$
\pi(r, n, d)=\sum_{\sigma \geq 0}\binom{\sigma+r-1}{\sigma}(\max \{0, d-(\sigma+r)(n-1)-1\})
$$

is the Castelnuovo-Harris function

Pirio-Trepréau bound

Theorem (Pirio-Trepréau, 2009)
Let $X=X^{r+1}(n, \delta) \subset \mathbb{P}^{N}$. Then

$$
N \leq \bar{\pi}(r, n, \delta)-1=\pi(r, n, \delta+r(n-1)+2)-1,
$$

where

$$
\pi(r, n, d)=\sum_{\sigma \geq 0}\binom{\sigma+r-1}{\sigma}(\max \{0, d-(\sigma+r)(n-1)-1\})
$$

is the Castelnuovo-Harris function bounding the genus $g(V)$ of an irreducible variety

$$
V^{r} \subset \mathbb{P}^{r+n-1}
$$

of degree $\operatorname{deg}(V)=d$.

Previously known results and some classifications

Let us begin with $\delta=2$ (or $n=2$). Recall that $\delta \geq n-1$.

Previously known results and some classifications

Let us begin with $\delta=2$ (or $n=2$). Recall that $\delta \geq n-1$.

- $X=X(3,2) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+2}$ quadric.

Previously known results and some classifications

Let us begin with $\delta=2$ (or $n=2$). Recall that $\delta \geq n-1$.

- $X=X(3,2) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+2}$ quadric.
- (C. Segre \&) Scorza (1909) : $\bar{\pi}(r, 2,2) \leq\binom{ r+1+2}{2}$

Let us begin with $\delta=2$ (or $n=2$). Recall that $\delta \geq n-1$.

- $X=X(3,2) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+2}$ quadric.
- (C. Segre \&) Scorza (1909) : $\bar{\pi}(r, 2,2) \leq\binom{ r+1+2}{2}$
- Scorza (1909) : X arbitrary

$$
\bar{\pi}(r, 2,2)=\binom{r+1+2}{2} \Longleftrightarrow X=\nu_{2}\left(\mathbb{P}^{r+1}\right) \subset \mathbb{P}_{\binom{r+1+2}{2}^{-1} .}
$$

Let us begin with $\delta=2$ (or $n=2$). Recall that $\delta \geq n-1$.

- $X=X(3,2) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+2}$ quadric.
- (C. Segre \&) Scorza (1909) : $\bar{\pi}(r, 2,2) \leq\binom{ r+1+2}{2}$
- Scorza (1909) : X arbitrary

$$
\bar{\pi}(r, 2,2)=\binom{r+1+2}{2} \Longleftrightarrow X=\nu_{2}\left(\mathbb{P}^{r+1}\right) \subset \mathbb{P}\binom{(r+1+2}{2}-1
$$

- Next case $X=X(2,2) \subset \mathbb{P}^{N}$.

Let us begin with $\delta=2$ (or $n=2$). Recall that $\delta \geq n-1$.

- $X=X(3,2) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+2}$ quadric.
- (C. Segre \&) Scorza (1909) : $\bar{\pi}(r, 2,2) \leq\binom{ r+1+2}{2}$
- Scorza (1909) : X arbitrary

$$
\left.\bar{\pi}(r, 2,2)=\binom{r+1+2}{2} \Longleftrightarrow X=\nu_{2}\left(\mathbb{P}^{r+1}\right) \subset \mathbb{P}^{(r+1+2}\right)_{2}^{-1}
$$

- Next case $X=X(2,2) \subset \mathbb{P}^{N}$.

Scorza (1909) : classification $X=X(2,2) \subset \mathbb{P}^{N}$ in some cases reconsidered in [Chiantini, Ciliberto, —; 201 ?].

Previously known results and some classifications

CLASSIFIED :
$X=X(2,2) \subset \mathbb{P}^{N}$ SMOOTH (conic-connected manifold)

Fano \& $b_{2}(X) \leq 2$
etc, etc
(lonescu, - ; 2008)

- Bompiani (?) (1921), Pirio \& - (2010) : $X^{r+1} \subset \mathbb{P}^{N}$ arbitrary

CLASSIFIED :
$X=X(2,2) \subset \mathbb{P}^{N}$ SMOOTH (conic-connected manifold)

Fano \& $b_{2}(X) \leq 2$
etc, etc
(lonescu, - ; 2008)

- Bompiani (?) (1921), Pirio \& - (2010) : $X^{r+1} \subset \mathbb{P}^{N}$ arbitrary

$$
\text { (a) } \bar{\pi}(r, 2, \delta)=\binom{r+1+\delta}{r+1}
$$

CLASSIFIED :
$X=X(2,2) \subset \mathbb{P}^{N}$ SMOOTH (conic-connected manifold)

Fano \& $b_{2}(X) \leq 2$
etc, etc
(lonescu, - ; 2008)

- Bompiani (?) (1921), Pirio \& - (2010) : $X^{r+1} \subset \mathbb{P}^{N}$ arbitrary
(a) $\bar{\pi}(r, 2, \delta)=\binom{r+1+\delta}{r+1}$
(b) $N=\binom{r+1+\delta}{r+1}-1 \Longleftrightarrow X=\nu_{\delta}\left(\mathbb{P}^{r+1}\right) \subset \mathbb{P}^{\binom{r+1+\delta}{2}-1}$

Previously known results and some classifications

Let us consider $\delta=3$. Recall $\delta \geq n-1$.

Previously known results and some classifications

Let us consider $\delta=3$. Recall $\delta \geq n-1$.

- $X=X(4,3) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+3} \& \operatorname{deg}(X)=3$ (CLASSIFIED).

Let us consider $\delta=3$. Recall $\delta \geq n-1$.

- $X=X(4,3) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+3} \& \operatorname{deg}(X)=3$ (CLASSIFIED).
- $\bar{\pi}(r, 3,3)=2 r+4$, as we shall see in a moment.

Let us consider $\delta=3$. Recall $\delta \geq n-1$.

- $X=X(4,3) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+3} \& \operatorname{deg}(X)=3$ (CLASSIFIED).
- $\bar{\pi}(r, 3,3)=2 r+4$, as we shall see in a moment.
- $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Let us consider $\delta=3$. Recall $\delta \geq n-1$.

- $X=X(4,3) \subset \mathbb{P}^{N} \Longrightarrow X^{r+1} \subset \mathbb{P}^{r+3} \& \operatorname{deg}(X)=3$ (CLASSIFIED).
- $\bar{\pi}(r, 3,3)=2 r+4$, as we shall see in a moment.

CLASSIFIED :

- $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1} \Longrightarrow \quad$ (Pirio, —; 2010) object of this talk

$$
\bar{\pi}(r, 3,3)=2 r+4
$$

Notation

- $x \in X=X^{r+1}(3,3) \subset \mathbb{P}^{N}$ general point ;

$$
\bar{\pi}(r, 3,3)=2 r+4
$$

Notation

- $x \in X=X^{r+1}(3,3) \subset \mathbb{P}^{N}$ general point;
- $T=T_{x} X=\mathbb{P}^{r+1}$ projective tangent space to X at x;

$$
\bar{\pi}(r, 3,3)=2 r+4
$$

Notation

- $x \in X=X^{r+1}(3,3) \subset \mathbb{P}^{N}$ general point;
- $T=T_{x} X=\mathbb{P}^{r+1}$ projective tangent space to X at x;
-

$$
\pi_{T}: X \rightarrow X_{T} \subseteq \mathbb{P}^{N-r-2}
$$

projection of X from T, not defined along $T \cap X$.

$\bar{\pi}(r, 3,3)=2 r+4$

- $p_{1} \neq p_{2} \in X$ general $\Longrightarrow \pi_{T}\left(p_{1}\right) \neq \pi_{T}\left(p_{2}\right)$.

$\bar{\pi}(r, 3,3)=2 r+4$

- $p_{1} \neq p_{2} \in X$ general $\Longrightarrow \pi_{T}\left(p_{1}\right) \neq \pi_{T}\left(p_{2}\right)$. (otherwise $N=r+2<2 r+3$).

$\bar{\pi}(r, 3,3)=2 r+4$

- $p_{1} \neq p_{2} \in X$ general $\Longrightarrow \pi_{T}\left(p_{1}\right) \neq \pi_{T}\left(p_{2}\right)$. (otherwise $N=r+2<2 r+3$).
- $\exists C=C_{x, p_{1}, p_{2}}$ with $\operatorname{deg}(C)=3$;

$\bar{\pi}(r, 3,3)=2 r+4$

- $p_{1} \neq p_{2} \in X$ general $\Longrightarrow \pi_{T}\left(p_{1}\right) \neq \pi_{T}\left(p_{2}\right)$. (otherwise $N=r+2<2 r+3$).
- $\exists C=C_{x, p_{1}, p_{2}}$ with $\operatorname{deg}(C)=3$;
- $\pi_{T}\left(C_{x, p_{1}, p_{2}}\right)=\left\langle\pi_{T}\left(p_{1}\right), \pi_{T}\left(p_{2}\right)\right\rangle \subseteq X_{T}$,

$\bar{\pi}(r, 3,3)=2 r+4$

- $p_{1} \neq p_{2} \in X$ general $\Longrightarrow \pi_{T}\left(p_{1}\right) \neq \pi_{T}\left(p_{2}\right)$. (otherwise $N=r+2<2 r+3$).
- $\exists C=C_{x, p_{1}, p_{2}}$ with $\operatorname{deg}(C)=3$;
- $\pi_{T}\left(C_{x, p_{1}, p_{2}}\right)=\left\langle\pi_{T}\left(p_{1}\right), \pi_{T}\left(p_{2}\right)\right\rangle \subseteq X_{T}$,
that is

$$
X_{T}=X(r+1,2,1)=\mathbb{P}^{r+1-\sigma}=\mathbb{P}^{N-r-2} .
$$

In conclusion $N=2 r+3-\sigma, \sigma \geq 0$ and $\bar{\pi}(r, 3,3)=2 r+4$.

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Remarks

- $C=C_{p_{1}, p_{2}, p_{3}} \subset\langle C\rangle$ is a twisted cubic;

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Remarks

- $C=C_{p_{1}, p_{2}, p_{3}} \subset\langle C\rangle$ is a twisted cubic ;
- $\pi_{T \mid C}: C \rightarrow L$ isomorphism, $L \subset X_{T}=\mathbb{P}^{r+1}$ line;

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Remarks

- $C=C_{p_{1}, p_{2}, p_{3}} \subset\langle C\rangle$ is a twisted cubic ;
- $\pi_{T \mid C}: C \rightarrow L$ isomorphism, $L \subset X_{T}=\mathbb{P}^{r+1}$ line;
- $\pi_{T}: X \rightarrow \mathbb{P}^{r+1}$ is birational ;

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Remarks

- $C=C_{p_{1}, p_{2}, p_{3}} \subset\langle C\rangle$ is a twisted cubic;
- $\pi_{T \mid C}: C \rightarrow L$ isomorphism, $L \subset X_{T}=\mathbb{P}^{r+1}$ line;
- $\pi_{T}: X \rightarrow \mathbb{P}^{r+1}$ is birational ;
- $\pi_{T}^{-1}=\phi_{\Lambda}: \mathbb{P}^{r+1}{ }_{-\rightarrow} X \subset \mathbb{P}^{2 r+3}, \Lambda \subset\left|\mathcal{O}_{\mathbb{P}^{r+1}}(3)\right|$ complete linear system.

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Remarks

- $\alpha: \widetilde{X}=\mathrm{BI}_{x} X \rightarrow X$ blow-up of X at x;

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Remarks

- $\alpha: \widetilde{X}=\mathrm{BI}_{x} X \rightarrow X$ blow-up of X at x;
- $E=\mathbb{P}^{r}$ exceptional divisor;

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Remarks

- $\alpha: \widetilde{X}=\mathrm{BI}_{x} X \rightarrow X$ blow-up of X at x;
- $E=\mathbb{P}^{r}$ exceptional divisor;
- $\tilde{\pi}_{T}: \widetilde{X} \rightarrow X \rightarrow \mathbb{P}^{r+1}$ induced rational map;

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Remarks

- $\alpha: \widetilde{X}=\mathrm{BI}_{x} X \rightarrow X$ blow-up of X at x;
- $E=\mathbb{P}^{r}$ exceptional divisor;
- $\tilde{\pi}_{T}: \widetilde{X} \rightarrow X \rightarrow \mathbb{P}^{r+1}$ induced rational map;
- $\tilde{\pi}_{T}(E)=\Pi_{x}=\mathbb{P}^{r} \subset \mathbb{P}^{r+1}$ HYPERPLANE

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Remarks

- $\alpha: \widetilde{X}=\mathrm{BI}_{x} X \rightarrow X$ blow-up of X at x;
- $E=\mathbb{P}^{r}$ exceptional divisor;
- $\tilde{\pi}_{T}: \widetilde{X} \rightarrow X \rightarrow \mathbb{P}^{r+1}$ induced rational map;
- $\tilde{\pi}_{T}(E)=\Pi_{x}=\mathbb{P}^{r} \subset \mathbb{P}^{r+1}$ HYPERPLANE

$$
\left(\pi_{T}^{-1}\left(\Pi_{x}\right)=x \& \pi_{T}^{-1}(L) \text { is smooth at } x \text { for } L \text { general }\right)
$$

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

- $\psi_{x}=\tilde{\pi}_{T \mid E}: E \rightarrow \Pi_{x}$ is a Cremona transformation given by $\Omega \subset \mathcal{O}_{\mathbb{P} r}(2)$ because

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

- $\psi_{x}=\tilde{\pi}_{T \mid E}: E \rightarrow \Pi_{x}$ is a Cremona transformation given by $\Omega \subset \mathcal{O}_{\mathbb{P}^{r}}(2)$ because

$$
\alpha^{*}(\mathcal{O}(1)) \otimes \mathcal{O}(-2 E) \otimes \mathcal{O}_{E}=\mathcal{O}_{\mathbb{P} r}(2)
$$

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

- $\psi_{x}=\tilde{\pi}_{T \mid E}: E \rightarrow \Pi_{x}$ is a Cremona transformation given by $\Omega \subset \mathcal{O}_{\mathbb{P} r}(2)$ because

$$
\alpha^{*}(\mathcal{O}(1)) \otimes \mathcal{O}(-2 E) \otimes \mathcal{O}_{E}=\mathcal{O}_{\mathbb{P}^{r}}(2)
$$

- $\Omega=\left|I I_{x, X}\right|$ Second fundamental form of X at x;

$$
X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

- $\psi_{x}=\tilde{\pi}_{T \mid E}: E \rightarrow \Pi_{x}$ is a Cremona transformation given by $\Omega \subset \mathcal{O}_{\mathbb{P}}(2)$ because

$$
\alpha^{*}(\mathcal{O}(1)) \otimes \mathcal{O}(-2 E) \otimes \mathcal{O}_{E}=\mathcal{O}_{\mathbb{P}^{r}}(2)
$$

- $\Omega=\left|I I_{x, X}\right|$ Second fundamental form of X at x;
- $\operatorname{Bs}\left(\left|I_{x, X}\right|\right)=B_{x} \subset E=$ asymptotic directions to X at x.

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

- $\operatorname{dim}\left(\left|I_{x, X}\right|\right)=r<\operatorname{codim}(X)-1=$ expected dimension.

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

- $\operatorname{dim}\left(\left|I_{x, X}\right|\right)=r<\operatorname{codim}(X)-1=$ expected dimension.
- $\psi_{x}^{-1}=\pi_{T \mid \Pi_{x}}^{-1}: \Pi_{x \rightarrow-} E$ given by $\tilde{\Omega} \subset\left|\mathcal{O}_{\mathbb{P}^{p} r}(2)\right|$.
(recall that $\pi_{T}^{-1}\left(\Pi_{x}\right)=x$!)

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

- $\operatorname{dim}\left(\left|I_{x, X}\right|\right)=r<\operatorname{codim}(X)-1=$ expected dimension.
- $\psi_{x}^{-1}=\pi_{T \mid \Pi_{x}}^{-1}: \Pi_{x \rightarrow-} E$ given by $\tilde{\Omega} \subset\left|\mathcal{O}_{\mathbb{P}^{r} r}(2)\right|$.
(recall that $\pi_{T}^{-1}\left(\Pi_{x}\right)=x$!)
- $\tilde{B}_{x}=\operatorname{Bs}\left(\psi_{x}^{-1}\right)$

Structure Theorem for $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem for $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\psi_{x}=\tilde{\pi}_{T \mid E}=\in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B_{x}=\operatorname{Bs}\left(\psi_{x}\right) \subset E=\mathbb{P}^{r} \\
\tilde{B}_{x}=\operatorname{Bs}\left(\psi_{x}^{-1}\right) \subset \Pi_{x}=\mathbb{P}^{r}
\end{array}\right.
$$

Structure Theorem for $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\psi_{x}=\tilde{\pi}_{T \mid E}=\in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B_{x}=\operatorname{Bs}\left(\psi_{x}\right) \subset E=\mathbb{P}^{r} \\
\tilde{B}_{x}=\operatorname{Bs}\left(\psi_{x}^{-1}\right) \subset \Pi_{x}=\mathbb{P}^{r}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Theorem (Pirio, }-(2010)) \\
& X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1} \text {. Then : }
\end{aligned}
$$

Structure Theorem for $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\psi_{x}=\tilde{\pi}_{T \mid E}=\in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B_{x}=\operatorname{Bs}\left(\psi_{x}\right) \subset E=\mathbb{P}^{r} \\
\tilde{B}_{x}=\operatorname{Bs}\left(\psi_{x}^{-1}\right) \subset \Pi_{x}=\mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Pirio, - (2010))
 $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$. Then :

A. $\psi_{x} \in \operatorname{Lin} \subset \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \Longleftrightarrow X$ SMOOTH rational normal scroll

Structure Theorem for $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\psi_{x}=\tilde{\pi}_{T \mid E}=\in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B_{x}=\operatorname{Bs}\left(\psi_{x}\right) \subset E=\mathbb{P}^{r} \\
\tilde{B}_{x}=\operatorname{Bs}\left(\psi_{x}^{-1}\right) \subset \Pi_{x}=\mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Pirio, - (2010))
 $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$. Then :

A. $\psi_{x} \in \operatorname{Lin} \subset \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \Longleftrightarrow X$ SMOOTH rational normal scroll
B. X not a scroll :

Structure Theorem for $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\psi_{x}=\tilde{\pi}_{T \mid E}=\in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B_{x}=\operatorname{Bs}\left(\psi_{x}\right) \subset E=\mathbb{P}^{r} \\
\tilde{B}_{x}=\operatorname{Bs}\left(\psi_{x}^{-1}\right) \subset \Pi_{x}=\mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$. Then :
A. $\psi_{x} \in \operatorname{Lin} \subset \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \Longleftrightarrow X$ SMOOTH rational normal scroll
B. X not a scroll :

1. $\Pi_{T}^{-1}: \mathbb{P}^{r+1} \xrightarrow{\text { bir. }} X$ is given by $\left|3 H-2 \tilde{B}_{x}\right|$
2. $B_{x}=\operatorname{Hill}^{t+1}(X, x) \sim_{\text {proj }} \tilde{B}_{x}$

Structure Theorem for $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\psi_{x}=\tilde{\pi}_{T \mid E}=\in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B_{x}=\operatorname{Bs}\left(\psi_{x}\right) \subset E=\mathbb{P}^{r} \\
\tilde{B}_{x}=\operatorname{Bs}\left(\psi_{x}^{-1}\right) \subset \Pi_{x}=\mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$. Then :
A. $\psi_{x} \in \operatorname{Lin} \subset \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \Longleftrightarrow X$ SMOOTH rational normal scroll
B. X not a scroll :

1. $\Pi_{T}^{-1}: \mathbb{P}^{r+1} \xrightarrow{\text { bir. }} X$ is given by $\left|3 H-2 \tilde{B}_{x}\right|$
2. $B_{x}=$ Hilb $^{t+1}(X, x) \sim_{\text {proj }} \tilde{B}_{x}$ (usually only $\operatorname{Hilb}^{t+1}(X, x) \subseteq B_{x}$ holds!)
3. X SMOOTH $\Longrightarrow B_{x}$ et \tilde{B}_{x} are SMOOTH

From $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

$\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\ \tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}\end{array}\right.$

- $\mathbf{x}=\left(x_{1}: \ldots: x_{r+1}\right)$ coordinates on \mathbb{P}^{r}
$\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\ \tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}\end{array}\right.$
- $\mathbf{x}=\left(x_{1}: \ldots: x_{r+1}\right)$ coordinates on \mathbb{P}^{r}
- $\phi=\left(\phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x})\right): \mathbb{P}^{r} \rightarrow \mathbb{P}^{r}$

From $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\ \tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}\end{array}\right.$

- $\mathbf{x}=\left(x_{1}: \ldots: x_{r+1}\right)$ coordinates on \mathbb{P}^{r}
- $\phi=\left(\phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x})\right): \mathbb{P}^{r} \rightarrow \mathbb{P}^{r}$
- $\phi^{-1} \circ \phi=\varphi(\mathbf{x})\left(x_{1}: \ldots: x_{r+1}\right)$ with $\varphi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{r}\right]_{3}$;
$\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\ \tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}\end{array}\right.$
- $\mathbf{x}=\left(x_{1}: \ldots: x_{r+1}\right)$ coordinates on \mathbb{P}^{r}
- $\phi=\left(\phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x})\right): \mathbb{P}^{r} \rightarrow \mathbb{P}^{r}$
- $\phi^{-1} \circ \phi=\varphi(\mathbf{x})\left(x_{1}: \ldots: x_{r+1}\right)$ with $\varphi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{r}\right]_{3}$; $\left(\phi^{-1} \circ \phi \sim_{\text {bir }} \mathbb{I}_{\mathbb{P}}\right)$

From $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$\phi: \mathbb{P}^{r}-\rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\ \tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}\end{array}\right.$

- $\mathbf{x}=\left(x_{1}: \ldots: x_{r+1}\right)$ coordinates on \mathbb{P}^{r}
- $\phi=\left(\phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x})\right): \mathbb{P}^{r} \rightarrow \mathbb{P}^{r}$
- $\phi^{-1} \circ \phi=\varphi(\mathbf{x})\left(x_{1}: \ldots: x_{r+1}\right)$ with $\varphi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{r}\right]_{3}$; $\left(\phi^{-1} \circ \phi \sim_{b i r} \mathbb{I}_{\mathbb{P}}\right)$
- the cubic hypersurface $V(\varphi(\mathbf{x})) \subset \mathbb{P}^{r}$ has double points along $B=V\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{r+1}(\mathbf{x})\right)=\operatorname{Bs}(\phi)$, that is

From $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\ \tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}\end{array}\right.$

- $\mathbf{x}=\left(x_{1}: \ldots: x_{r+1}\right)$ coordinates on \mathbb{P}^{r}
- $\phi=\left(\phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x})\right): \mathbb{P}^{r_{-\rightarrow}} \mathbb{P}^{r}$
- $\phi^{-1} \circ \phi=\varphi(\mathbf{x})\left(x_{1}: \ldots: x_{r+1}\right)$ with $\varphi(\mathbf{x}) \in \mathbb{C}\left[x_{1}, \ldots, x_{r}\right]_{3}$; $\left(\phi^{-1} \circ \phi \sim_{\text {bir }} \mathbb{I}_{\text {Pr }}\right.$)
- the cubic hypersurface $V(\varphi(\mathbf{x})) \subset \mathbb{P}^{r}$ has double points along $B=V\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{r+1}(\mathbf{x})\right)=\operatorname{Bs}(\phi)$, that is

$$
\frac{\partial \varphi(\mathbf{x})}{\partial x_{i}} \in\left\langle\psi_{1}(\mathbf{x}), \ldots, \psi_{r+1}(\mathbf{x})\right\rangle \forall i=1, \ldots, r+1
$$

- The cubic hypersurface $V(\varphi(\mathbf{x}))$ is the secant scheme of B, that is
- The cubic hypersurface $V(\varphi(\mathbf{x}))$ is the secant scheme of B, that is the locus of lines spanned by lenght 2 subschemes of B

Correspondence between $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Correspondence between $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Correspondence between $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r}-\rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Proposition

Let

$$
X_{\phi}=\overline{\left\{\left(1: \mathbf{x}: \phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x}): \varphi(\mathbf{x})\right\}\right.} \subset \mathbb{P}^{2(r+1)+1}
$$

Then :

Correspondence between $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Proposition

Let

$$
X_{\phi}=\overline{\left\{\left(1: \mathbf{x}: \phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x}): \varphi(\mathbf{x})\right\}\right.} \subset \mathbb{P}^{2(r+1)+1}
$$

Then :
A. $X_{\phi}=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$, not a rational normal scroll;

Correspondence between $\operatorname{Bir}_{(2,2)}\left(\mathbb{P}^{r}\right)$ to $X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Proposition

Let

$$
X_{\phi}=\overline{\left\{\left(1: \mathbf{x}: \phi_{1}(\mathbf{x}): \ldots: \phi_{r+1}(\mathbf{x}): \varphi(\mathbf{x})\right\}\right.} \subset \mathbb{P}^{2(r+1)+1}
$$

Then :
A. $X_{\phi}=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$, not a rational normal scroll;
B. $B_{x} \sim_{\text {proj }} B$ for $x \in X$ general

Correspondence

There exists a bijection

$$
\Psi: \frac{\left\{\operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right)\right\}}{\text { proj. transf. }} \longrightarrow \frac{\left\{X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}\right\}}{\text { induced proj. transf. }}
$$

given by

Correspondence

There exists a bijection

$$
\Psi: \frac{\left\{\operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right)\right\}}{\text { proj. transf. }} \longrightarrow \frac{\left\{X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}\right\}}{\text { induced proj. transf. }}
$$

given by

$$
\Psi(\phi)=X_{\phi}
$$

Consequences of the Structure Theorem and of the Correspendence

Consequences of the Structure Theorem and of the Correspendence

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Consequences of the Structure Theorem and of the Correspendence

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Corollary (Pirio, - (2010))
Let $\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right)$. Then

Consequences of the Structure Theorem and of the Correspendence

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Corollary (Pirio, - (2010))
Let $\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right)$. Then

- B and \tilde{B} are projectively equivalent

Consequences of the Structure Theorem and of the Correspendence

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Corollary (Pirio, - (2010))

Let $\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right)$. Then

- B and \tilde{B} are projectively equivalent
(2) modulo a projective transformation $\phi=\phi^{-1}$, that is

Consequences of the Structure Theorem and of the Correspendence

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bin}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Corollary (Pirio, - (2010))

Let $\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{22}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right)$. Then
(1) B and \tilde{B} are projectively equivalent
(2) modulo a projective transformation $\phi=\phi^{-1}$, that is ϕ is (essentially) an involution.

Consequences of the Structure Theorem and of the Correspondence

Consequences of the Structure Theorem and of the Correspondence

> Corollary (Pirio, $-(2010))$
> $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$. Then

Consequences of the Structure Theorem and of the Correspondence

> Corollary $($ Pirio, $-(2010))$
> $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$. Then
> X is a OADP variety, that is

Consequences of the Structure Theorem and of the Correspondence

Corollary (Pirio, - (2010))
$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$. Then
X is a OADP variety, that is
through a general point $q \in \mathbb{P}^{2 r+3}$ there passes a unique secant line to X.

Remark

The Structure Theorem has important applications to the classification of (SMOOTH) OADP varieties.

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Ein, Shepherd-Barron (1989))
If B is SMOOTH, then one of the following holds:

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r}-\mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Ein, Shepherd-Barron (1989))

If B is SMOOTH, then one of the following holds:
(1) $r \geq 2, B=Q^{r-2} \amalg p, Q^{r-2}$ smooth quadric hyp. \& $p \notin\left\langle Q^{r-2}\right\rangle$ (ELEMENTARY QUADRATIC TRANSF.);

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r}-\rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Ein, Shepherd-Barron (1989))

If B is SMOOTH, then one of the following holds:
(1) $r \geq 2, B=Q^{r-2} \amalg p, Q^{r-2}$ smooth quadric hyp. \& $p \notin\left\langle Q^{r-2}\right\rangle$ (ELEMENTARY QUADRATIC TRANSF.);
(2) $r=5, B \sim_{\text {proj }} \nu_{2}\left(\mathbb{P}^{2}\right)$;

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r}-\rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Ein, Shepherd-Barron (1989))

If B is SMOOTH, then one of the following holds:
(1) $r \geq 2, B=Q^{r-2} \amalg p, Q^{r-2}$ smooth quadric hyp. \& $p \notin\left\langle Q^{r-2}\right\rangle$ (ELEMENTARY QUADRATIC TRANSF.);
(c) $r=5, B \sim_{\text {proj }} \nu_{2}\left(\mathbb{P}^{2}\right)$;
(0) $r=8, B \sim_{\text {proj }} \operatorname{Segre}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$;

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r}-\rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Ein, Shepherd-Barron (1989))

If B is SMOOTH, then one of the following holds:
(1) $r \geq 2, B=Q^{r-2} \amalg p, Q^{r-2}$ smooth quadric hyp. \& $p \notin\left\langle Q^{r-2}\right\rangle$ (ELEMENTARY QUADRATIC TRANSF.);
(c) $r=5, B \sim_{\text {proj }} \nu_{2}\left(\mathbb{P}^{2}\right)$;
(0) $r=8, B \sim_{\text {proj }} \operatorname{Segre}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$;

- $r=14, B \sim_{\text {proj }} \mathbb{G}(1,5)$;

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

$$
\phi: \mathbb{P}^{r}-\rightarrow \mathbb{P}^{r} \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right) \quad\left\{\begin{array}{l}
B=\operatorname{Bs}(\phi) \subset \mathbb{P}^{r} \\
\tilde{B}=\operatorname{Bs}\left(\phi^{-1}\right) \subset \mathbb{P}^{r}
\end{array}\right.
$$

Theorem (Ein, Shepherd-Barron (1989))

If B is SMOOTH, then one of the following holds:
(1) $r \geq 2, B=Q^{r-2} \amalg p, Q^{r-2}$ smooth quadric hyp. \& $p \notin\left\langle Q^{r-2}\right\rangle$ (ELEMENTARY QUADRATIC TRANSF.);
(c) $r=5, B \sim_{\text {proj }} \nu_{2}\left(\mathbb{P}^{2}\right)$;
(0) $r=8, B \sim_{\text {proj }} \operatorname{Segre}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)$;

- $r=14, B \sim_{\text {proj }} \mathbb{G}(1,5)$;
- $r=26, B \sim_{\text {proj }} E_{6}, \operatorname{dim}\left(E_{6}\right)=16$.

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ SMOOTH. Then one of the following holds, modulo projective equivalence :

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ SMOOTH. Then one of the following holds, modulo projective equivalence :
(1) X is either $S_{1 \ldots 122}$ or $S_{1 \ldots 113}$;

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ SMOOTH. Then one of the following holds, modulo projective equivalence :
(1) X is either $S_{1 \ldots 122}$ or $S_{1 \ldots 113}$;
(2) $X=\operatorname{Segre}\left(\mathbb{P}^{1} \times Q^{r}\right), Q^{r}$ smooth hyp.

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ SMOOTH. Then one of the following holds, modulo projective equivalence :
(1) X is either $S_{1 \ldots 122}$ or $S_{1 \ldots 113}$;
(2) $X=\operatorname{Segre}\left(\mathbb{P}^{1} \times Q^{r}\right), Q^{r}$ smooth hyp.
(3) $r=5, X=L G_{3}\left(\mathbb{C}^{6}\right) \subset \mathbb{P}^{13}$;

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ SMOOTH. Then one of the following holds, modulo projective equivalence :
(1) X is either $S_{1 \ldots 122}$ or $S_{1 \ldots 113}$;
(2) $X=\operatorname{Segre}\left(\mathbb{P}^{1} \times Q^{r}\right), Q^{r}$ smooth hyp.
(3) $r=5, X=L G_{3}\left(\mathbb{C}^{6}\right) \subset \mathbb{P}^{13}$;
(9) $r=8$ and $X=G_{3}\left(\mathbb{C}^{6}\right) \subset \mathbb{P}^{19}$;

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ SMOOTH. Then one of the following holds, modulo projective equivalence :
(1) X is either $S_{1 \ldots 122}$ or $S_{1 \ldots 113}$;
(2) $X=\operatorname{Segre}\left(\mathbb{P}^{1} \times Q^{r}\right), Q^{r}$ smooth hyp.
(3) $r=5, X=L G_{3}\left(\mathbb{C}^{6}\right) \subset \mathbb{P}^{13}$;
(1) $r=8$ and $X=G_{3}\left(\mathbb{C}^{6}\right) \subset \mathbb{P}^{19}$;
(9) $r=14$ and $X=O G_{6}\left(\mathbb{C}^{12}\right) \subset \mathbb{P}^{31}$;

Classification of SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Structure Theorem \& Ein-SB Theorem yield :

Theorem (Pirio, - (2010))

$X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ SMOOTH. Then one of the following holds, modulo projective equivalence :
(1) X is either $S_{1 \ldots 122}$ or $S_{1 \ldots 113}$;
(2) $X=\operatorname{Segre}\left(\mathbb{P}^{1} \times Q^{r}\right), Q^{r}$ smooth hyp.
(3) $r=5, X=L G_{3}\left(\mathbb{C}^{6}\right) \subset \mathbb{P}^{13}$;
(1) $r=8$ and $X=G_{3}\left(\mathbb{C}^{6}\right) \subset \mathbb{P}^{19}$;
(9) $r=14$ and $X=O G_{6}\left(\mathbb{C}^{12}\right) \subset \mathbb{P}^{31}$;
(6) $r=26$ and $X=E_{7} \subset \mathbb{P}^{55}$.

Jordan algebras

Jordan algebras

- $J=\mathbb{C}$-algebra

Jordan algebras

- $J=\mathbb{C}$-algebra $\left\{\begin{array}{l}-\operatorname{dim}(J)<+\infty \quad(\operatorname{dim} J=r+1) \\ -J \text { commutative } \\ - \text { with unity } e\end{array}\right.$

Jordan algebras

- $J=\mathbb{C}$-algebra $\left\{\begin{array}{l}-\operatorname{dim}(J)<+\infty \quad(\operatorname{dim} J=r+1) \\ -J \text { commutative } \\ - \text { with unity } e\end{array}\right.$

Definition

J Jordan algebra if

Jordan algebras

- $J=\mathbb{C}$-algebra $\left\{\begin{array}{l}-\operatorname{dim}(J)<+\infty \quad(\operatorname{dim} J=r+1) \\ -J \text { commutative } \\ - \text { with unity } e\end{array}\right.$

Definition

J Jordan algebra if

$$
\mathrm{x}^{2}(\mathrm{yx})=\left(\mathrm{x}^{2} \mathrm{y}\right) \mathrm{x} \quad \forall x, y \in J
$$

Examples of Jordan algebras

Examples of Jordan algebras

Examples

(1) J associative, commutative (and with unity, always assumed!).

Examples of Jordan algebras

Examples

(1) J associative, commutative (and with unity, always assumed!).
(2) J associative and non-commutative

$$
x * y:=\frac{(x y+y x)}{2}
$$

Examples of Jordan algebras

Examples

(1) J associative, commutative (and with unity, always assumed!).
(2) J associative and non-commutative

$$
\begin{array}{r}
x * y:=\frac{(x y+y x)}{2} \\
\Longrightarrow J^{+}=(J, *) \text { Jordan algebra }
\end{array}
$$

Examples of Jordan algebras

Examples

(1) J associative, commutative (and with unity, always assumed!).
(2) J associative and non-commutative

$$
\begin{array}{r}
x * y:=\frac{(x y+y x)}{2} \\
\Longrightarrow J^{+}=(J, *) \text { Jordan algebra }
\end{array}
$$

(3) $B=(\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}) \otimes \mathbb{C} \Longrightarrow M_{3 \times 3}(B)$

Examples of Jordan algebras

Examples

(1) J associative, commutative (and with unity, always assumed!).
(2) J associative and non-commutative

$$
\begin{array}{r}
x * y:=\frac{(x y+y x)}{2} \\
\Longrightarrow J^{+}=(J, *) \text { Jordan algebra }
\end{array}
$$

(3) $B=(\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}) \otimes \mathbb{C} \Longrightarrow M_{3 \times 3}(B)$ $\Longrightarrow \operatorname{Herm}_{3}(B)$ with $M * N=(M N+N M) / 2$ Jordan algebra.

Jordan Algebras

- J Jordan algebra

Jordan Algebras

- J Jordan algebra $\Longrightarrow \quad-a^{k}$ well defined $\forall k \in \mathbb{N}, \forall a \in J ~=~-\langle a\rangle=\left\langle a^{k}, k \in \mathbb{N}\right\rangle$ associative

Jordan Algebras

- J Jordan algebra $\quad \begin{aligned} & -a^{k} \text { well defined } \forall k \in \mathbb{N}, \forall a \in J \\ & \\ & -\langle a\rangle=\left\langle a^{k}, k \in \mathbb{N}\right\rangle \text { associative }\end{aligned}$

Definition

(1) $\operatorname{rank}(J)=\operatorname{dim}\langle a\rangle \leq r+1 \quad(a \in J$ generic $)$;

Jordan Algebras

- J Jordan algebra $\Longrightarrow \quad-a^{k}$ well defined $\forall k \in \mathbb{N}, \forall a \in J ~=~-\langle a\rangle=\left\langle a^{k}, k \in \mathbb{N}\right\rangle$ associative

Definition

(1) $\operatorname{rank}(J)=\operatorname{dim}\langle a\rangle \leq r+1 \quad(a \in J$ generic $)$;
(2. J is called cubic if $\operatorname{rank}(J)=3$

Cubic Jordan algebras

Cubic Jordan algebras

Proposition
 J cubic Jordan algebra.

Cubic Jordan algebras

Proposition

J cubic Jordan algebra.
(1) $\exists N: J \rightarrow \mathbb{C}$ cubic norm $\left(N \in \operatorname{Sym}^{3}\left(J^{*}\right)\right)$

Cubic Jordan algebras

Proposition

J cubic Jordan algebra.
(1) $\exists N: J \rightarrow \mathbb{C}$ cubic norm $\left(N \in \operatorname{Sym}^{3}\left(J^{*}\right)\right)$
(2) $\exists a \mapsto a^{\#}, J \rightarrow J$ adjoint $\left(\bullet \# \in \operatorname{Sym}^{2}\left(J^{*}\right) \otimes J\right)$
(3) such that

$$
\text { (a) }\left(a^{\#}\right)^{\#}=a \quad \forall a \in J ;
$$

Cubic Jordan algebras

Proposition

J cubic Jordan algebra.
(1) $\exists N: J \rightarrow \mathbb{C}$ cubic norm $\left(N \in \operatorname{Sym}^{3}\left(J^{*}\right)\right)$
(2) $\exists a \mapsto a^{\#}, J \rightarrow J$ adjoint $\left(\bullet \# \in \operatorname{Sym}^{2}\left(J^{*}\right) \otimes J\right)$
(3) such that
(a) $\left(a^{\#}\right)^{\#}=a \quad \forall a \in J$;
(b) $a a^{\#}=a^{\#} a=N(a) e \quad \forall a \in J$.

Cubic Jordan algebras

Proposition

J cubic Jordan algebra.
(1) $\exists N: J \rightarrow \mathbb{C}$ cubic norm $\left(N \in \operatorname{Sym}^{3}\left(J^{*}\right)\right)$
(2) $\exists a \mapsto a^{\#}, J \rightarrow J$ adjoint $\left(\bullet \# \in \operatorname{Sym}^{2}\left(J^{*}\right) \otimes J\right)$
(3) such that

$$
\begin{aligned}
& \text { (a) }\left(a^{\#}\right)^{\#}=a \quad \forall a \in J ; \\
& \text { (b) } a a^{\#}=a^{\#} a=N(a) e \quad \forall a \in J .
\end{aligned}
$$

In particular : a invertible $\Longleftrightarrow N(a) \neq 0$

Cubic Jordan algebras

Proposition

J cubic Jordan algebra.
(1) $\exists N: J \rightarrow \mathbb{C}$ cubic norm $\left(N \in \operatorname{Sym}^{3}\left(J^{*}\right)\right)$
(2) $\exists a \mapsto a^{\#}, J \rightarrow J$ adjoint $\left(\bullet \# \in \operatorname{Sym}^{2}\left(J^{*}\right) \otimes J\right)$
(3) such that

$$
\begin{aligned}
& \text { (a) }\left(a^{\#}\right)^{\#}=a \quad \forall a \in J ; \\
& \text { (b) } a a^{\#}=a^{\#} a=N(a) e \quad \forall a \in J .
\end{aligned}
$$

In particular : a invertible $\Longleftrightarrow N(a) \neq 0 \Longrightarrow a^{-1}=\frac{a^{\#}}{N(a)}$

Twisted cubic associated to a Jordan algebra

Definition

J cubic Jordan algebra, $\operatorname{dim}(J)=r+1, N: J \rightarrow \mathbb{C}$ cubic norm.

Definition

J cubic Jordan algebra, $\operatorname{dim}(J)=r+1, N: J \rightarrow \mathbb{C}$ cubic norm.

$$
X_{J}=\overline{\left\{\left(1: \mathbf{x}: \mathbf{x}^{\#}: N(\mathbf{x})\right), \quad \mathbf{x} \in J\right\}} \subset \mathbb{P}(\mathbb{C} \oplus J \oplus J \oplus \mathbb{C})=\mathbb{P}^{2(r+1)+1}
$$

Definition

J cubic Jordan algebra, $\operatorname{dim}(J)=r+1, N: J \rightarrow \mathbb{C}$ cubic norm.
$X_{J}=\overline{\left\{\left(1: \mathbf{x}: \mathbf{x}^{\#}: N(\mathbf{x})\right), \quad \mathbf{x} \in J\right\}} \subset \mathbb{P}(\mathbb{C} \oplus J \oplus J \oplus \mathbb{C})=\mathbb{P}^{2(r+1)+1}$
is the twisted cubic over the Jordan algebra J.

Twisted cubic associated to a Jordan algebra

Remarks
(1) For $J=\mathbb{C}, x^{\#}=x^{2}$ and $N(x)=x^{3}$ we get

Remarks

(1) For $J=\mathbb{C}, x^{\#}=x^{2}$ and $N(x)=x^{3}$ we get

$$
X_{\mathbb{C}}=\overline{\left\{\left(1: x: x^{2}: x^{3}\right), x \in \mathbb{C}\right\}} \subset \mathbb{P}^{3}
$$

(2) by the previous construction

$$
X_{J}=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}
$$

Correspondence between $\mathrm{Bir}_{2,2}\left(\mathbb{P}^{r}\right)$ and Jordan algebras

Correspondence between $\mathrm{Bir}_{2,2}\left(\mathbb{P}^{r}\right)$ and Jordan algebras

Theorem (Pirio, - (2010))
Let $\phi \in \operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \operatorname{Lin}\left(\mathbb{P}^{r}\right)$ be an involution. Then

Correspondence between $\operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right)$ and Jordan algebras

Theorem (Pirio, — (2010))
Let $\phi \in \mathbf{B i r}_{2,2}\left(\mathbb{P}^{r}\right) \backslash \mathbf{L i n}\left(\mathbb{P}^{r}\right)$ be an involution. Then
\exists a Jordan algebra structure $J=\left(\mathbb{C}^{r+1}, *\right)$ such that

$$
\phi=\bullet \# .
$$

Classification of $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Corollary (Pirio, - (2010))

Every $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ is projectively equivalent to a X_{J} for some Jordan algebra J.

Classification of $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Corollary (Pirio, - (2010))

Every $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ is projectively equivalent to a X_{J} for some Jordan algebra J.

Remarks

(1) SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ correspond,

Classification of $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Corollary (Pirio, - (2010))

Every $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ is projectively equivalent to a X_{J} for some Jordan algebra J.

Remarks

(1) SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ correspond, as expected,

Classification of $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Corollary (Pirio, - (2010))

Every $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ is projectively equivalent to a X_{J} for some Jordan algebra J.

Remarks

(1) SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ correspond, as expected, to semi-simple Jordan algebras;

Classification of $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$

Corollary (Pirio, - (2010))

Every $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ is projectively equivalent to a X_{J} for some Jordan algebra J.

Remarks

(1) SMOOTH $X=X^{r+1}(3,3) \subset \mathbb{P}^{2(r+1)+1}$ correspond, as expected, to semi-simple Jordan algebras;
(2) $\operatorname{Sing}\left(X_{J}\right)$ related to the RADICAL of J and to the IRREDUCIBILITY of $N(\mathbf{x})$.

Applications

Proposition

Let J be a cubic Jordan algebra of dimension 3. Then it is isomorphic to one of the following :

Applications

Proposition

Let J be a cubic Jordan algebra of dimension 3. Then it is isomorphic to one of the following :

$$
J_{1}=\mathbb{C} \times \mathbb{C} \times \mathbb{C}, \quad J_{2}=\mathbb{C} \times \frac{\mathbb{C}[X]}{\left(X^{2}\right)}, \quad J_{3}=\frac{\mathbb{C}[X]}{\left(X^{3}\right)}
$$

Applications

Theorem (Study (1890) ; Scorza (1935))

A cubic Jordan algebra of dimension 4 is isomorphic to one of the following :

Applications

Theorem (Study (1890) ; Scorza (1935))

A cubic Jordan algebra of dimension 4 is isomorphic to one of the following :

Algbre	Adjoint $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\#}$
$\mathbb{C} \times \mathbb{C}[X, Y] /(X, Y)^{2}$	$\left(x_{2}{ }^{2}, x_{1} x_{2},-x_{1} x_{3},-x_{1} x_{4}\right)$
$\mathbb{C}[X, Y] /\left(X^{2}, Y^{2}\right)$	$\left(x_{1}{ }^{2},-x_{1} x_{2},-x_{1} x_{3}, 2 x_{2} x_{3}-x_{1} x_{4}\right)$
$\mathbb{C}[X, Y] /\left(X^{3}, X Y, Y^{2}\right)$	$\left(x_{1}{ }^{2},-x_{1} x_{2},-x_{1} x_{3}, x_{2}{ }^{2}-x_{1} x_{4}\right)$
$\mathbb{C} \times\left(\begin{array}{ll}\mathbb{C} & \mathbb{C} \\ 0\end{array}\right)$	$\left(x_{2} x_{4}, x_{1} x_{4},-x_{1} x_{3}, x_{1} x_{2}\right)$
$\left\{\left.\left(\begin{array}{ll}a & 0 \\ c & 0 \\ d & 0 \\ d & 0 \\ 0\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{C}\right\}$	$\left(x_{1} x_{2}, x_{1}{ }^{2},-x_{2} x_{3},-x_{1} x_{4}\right)$
$\mathbb{C} \times A^{\prime}$ avec rang $\left(A^{\prime}\right)=2$	$\left(x_{2}^{2}+x_{3}^{2}+x_{4}^{2}, x_{1} x_{2},-x_{1} x_{3},-x_{1} x_{4}\right)$
A_{*}	$\left(x_{1} x_{2}, x_{1}^{2}, x_{4}{ }^{2}-x_{2} x_{3}, x_{1} x_{4}\right)$

Applications

Remarks

- Pan-Ronga-Vust (2001) classified Bir $_{2,2}\left(\mathbb{P}^{3}\right)$ describing seven different types of transformations according to their base loci.

Applications

Remarks

- Pan-Ronga-Vust (2001) classified Bir $_{2,2}\left(\mathbb{P}^{3}\right)$ describing seven different types of transformations according to their base loci.
- Wesseler classified all Jordan algebras J with $\operatorname{dim}(J) \leq 6$.

Applications

Remarks

- Pan-Ronga-Vust (2001) classified Bir $_{2,2}\left(\mathbb{P}^{3}\right)$ describing seven different types of transformations according to their base loci.
- Wesseler classified all Jordan algebras J with $\operatorname{dim}(J) \leq 6$.
- Wesseler methods can be used to obtain in a simple way the classification of cubic Jordan algebras J with $\operatorname{dim}(J) \leq 8$.

Applications

Remarks

- Pan-Ronga-Vust (2001) classified Bir $_{2,2}\left(\mathbb{P}^{3}\right)$ describing seven different types of transformations according to their base loci.
- Wesseler classified all Jordan algebras J with $\operatorname{dim}(J) \leq 6$.
- Wesseler methods can be used to obtain in a simple way the classification of cubic Jordan algebras J with $\operatorname{dim}(J) \leq 8$.
- In this way the classification of $\operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right)$ with $r \leq 7$ easily follows.

Applications

Remarks

- Pan-Ronga-Vust (2001) classified Bir $_{2,2}\left(\mathbb{P}^{3}\right)$ describing seven different types of transformations according to their base loci.
- Wesseler classified all Jordan algebras J with $\operatorname{dim}(J) \leq 6$.
- Wesseler methods can be used to obtain in a simple way the classification of cubic Jordan algebras J with $\operatorname{dim}(J) \leq 8$.
- In this way the classification of $\operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right)$ with $r \leq 7$ easily follows.
- Semple (1929) describes general elements of $\operatorname{Bir}_{2,2}\left(\mathbb{P}^{4}\right)$.

Applications

Remarks

- Pan-Ronga-Vust (2001) classified Bir $_{2,2}\left(\mathbb{P}^{3}\right)$ describing seven different types of transformations according to their base loci.
- Wesseler classified all Jordan algebras J with $\operatorname{dim}(J) \leq 6$.
- Wesseler methods can be used to obtain in a simple way the classification of cubic Jordan algebras J with $\operatorname{dim}(J) \leq 8$.
- In this way the classification of $\operatorname{Bir}_{2,2}\left(\mathbb{P}^{r}\right)$ with $r \leq 7$ easily follows.
- Semple (1929) describes general elements of $\operatorname{Bir}_{2,2}\left(\mathbb{P}^{4}\right)$.
- By geometrical methods Bruno and Verra reconsidered Semple's classification and generalized it to \mathbb{P}^{5} with a description of general elements.

Other applications

Other applications

Theorem (Pirio, — (2009))

Let X be a proper irreducible variety of dimension $r+1$, let D be a nef Cartier divisor on X.

Other applications

Theorem (Pirio, - (2009))

Let X be a proper irreducible variety of dimension $r+1$, let D be a nef Cartier divisor on X. Suppose that through $n \geq 2$ general points there passes an irreducible curve C such that $(D \cdot C)=\delta \geq n-1$. Then

Other applications

Theorem (Pirio, - (2009))

Let X be a proper irreducible variety of dimension $r+1$, let D be a nef Cartier divisor on X. Suppose that through $n \geq 2$ general points there passes an irreducible curve C such that $(D \cdot C)=\delta \geq n-1$. Then

$$
\begin{equation*}
D^{r+1} \leq \frac{\delta^{r+1}}{(n-1)^{r}} \tag{1}
\end{equation*}
$$

Other applications

Theorem (Pirio, - (2009))

Let X be a proper irreducible variety of dimension $r+1$, let D be a nef Cartier divisor on X. Suppose that through $n \geq 2$ general points there passes an irreducible curve C such that $(D \cdot C)=\delta \geq n-1$. Then

$$
\begin{equation*}
D^{r+1} \leq \frac{\delta^{r+1}}{(n-1)^{r}} \tag{1}
\end{equation*}
$$

In particular, if $X=X(r+1, n, \delta) \subset \mathbb{P}^{N}$, then

$$
\begin{equation*}
\operatorname{deg}(X) \leq \frac{\delta^{r+1}}{(n-1)^{r}} \tag{2}
\end{equation*}
$$

