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Enriques surfaces

Enriques surface Y =
quotient of K3 surface X by a fixed point free involution τ

Classical interest because q(Y ) = pg (Y ) = 0,
yet Y is not rational (κ(Y ) = 0)

Moduli theory induced from lattice-polarized K3 surfaces,
but how about the arithmetic of Enriques surfaces?

Example: potential density of rational points by
Bogomolov–Tschinkel

Today: fields of definition for specific Enriques surfaces
– those covered by singular K3 surfaces
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Enriques surfaces

Singular K3
surfaces

Singular Enriques
surfaces

Proof of the
Theorem

Concluding
remarks

Enriques surfaces

Enriques surface Y =
quotient of K3 surface X by a fixed point free involution τ

Classical interest because q(Y ) = pg (Y ) = 0,
yet Y is not rational (κ(Y ) = 0)

Moduli theory induced from lattice-polarized K3 surfaces,
but how about the arithmetic of Enriques surfaces?

Example: potential density of rational points by
Bogomolov–Tschinkel

Today: fields of definition for specific Enriques surfaces
– those covered by singular K3 surfaces



Arithmetic of
singular Enriques

surfaces

Matthias Schütt
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Singular K3 surfaces

K3 surface X : smooth, projective surface with
h1(X ,OX ) = 0, ωX = OX .

Here: work over C,
so Picard number ρ(X ) ≤ h1,1(X ) = 20 (Lefschetz)

Much of arithmetic concentrated in isolated case ρ = 20:
singular K3 surfaces (in the sense of exceptional)

Example: Fermat quartic

X = {x4
0 + x4

1 + x4
2 + x4

4 = 0} ⊂ P3.

48 lines have intersection matrix of rank 20 and discriminant
−64; hence they generate NS(X ) up to finite index.
[Non-trivial: showing that the lines generate NS(X ).]



Arithmetic of
singular Enriques

surfaces

Matthias Schütt
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Torelli for singular K3 surfaces

Transcendental lattice T (X ) = NS(X )⊥ ⊂ H2(X ,Z)

Positive-definite, even, integral quadratic form given by 2× 2
matrix Q(X ) (up to conjugation in SL(2,Z)):

Q(X ) =

(
2a b
b 2c

)
.

Here a, b, c ∈ Z, a, c > 0 and
discriminant d = b2 − 4ac < 0.

Torelli: X ∼= Y ⇐⇒ T (X ) ∼= T (Y )
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Surjectivity of period map

Statement: All 2× 2 matrices Q are attained by

1. singular abelian surfaces (ρ(A) = 4) [Shioda–Mitani ’74]

2. singular K3 surfaces [Shioda–Inose ’76]

Proof for 1.: constructive A = Eτ × Eτ ′

for complex tori Eτ = C/(Z + τZ)

τ =
−b +

√
d

2a
, τ ′ =

b +
√

d

2
.

Subtle point for 2.: Kummer surfaces have

T (Km(A)) = T (A)(2),

so Kummer surfaces do not suffice to prove surjectivity.
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Enriques surfaces

Singular K3
surfaces

Singular Enriques
surfaces

Proof of the
Theorem

Concluding
remarks

Surjectivity of period map

Statement: All 2× 2 matrices Q are attained by

1. singular abelian surfaces (ρ(A) = 4) [Shioda–Mitani ’74]

2. singular K3 surfaces [Shioda–Inose ’76]

Proof for 1.: constructive

A = Eτ × Eτ ′

for complex tori Eτ = C/(Z + τZ)

τ =
−b +

√
d

2a
, τ ′ =

b +
√

d

2
.

Subtle point for 2.: Kummer surfaces have

T (Km(A)) = T (A)(2),

so Kummer surfaces do not suffice to prove surjectivity.



Arithmetic of
singular Enriques

surfaces

Matthias Schütt
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Shioda–Inose structure

Instead: exhibit a double covering X of Km(A) that is K3
and recovers T (A) = T (X )

A X
↘ ↙

Km(A)

(This construction was extended to certain K3 surfaces of
Picard number ρ ≥ 17 by Morrison.)

Example: Fermat quartic: Q(X ) =

(
8 0
0 8

)
.

1. X = Km(Ei × E2i ).

2. Shioda-Inose surface for Ei × E4i .
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Interlude: CM elliptic curves

E ′ = Eτ ′ as above =⇒ complex multiplication (CM) by an
order in K = Q(

√
d)

Shimura: j(E ′) generates ring class field H(d) over K
= abelian extension of K with Gal(H(d)/K ) = Cl(d)
(class group consisting of primitive quadratic forms Q of
discriminant d with Gauss composition)

Modularity: L-function described by Hecke character ψ

Consequence: singular abelian surface A defined over H(d),
modular ( ψ2)
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Modularity: L-function described by Hecke character ψ

Consequence: singular abelian surface A defined over H(d),
modular ( ψ2)



Arithmetic of
singular Enriques

surfaces

Matthias Schütt
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Arithmetic of singular K3 surfaces

Obtain from Shioda–Inose structure:
singular K3 X defined over some number field,

but a priori
extension involved in double covering X 99K Km(A).

Inose ’77: Explicit model as quartic in P3 over extension of
H(d) by 3

√
jj ′ and

√
(j − 123)(j ′ − 123)

(Weber functions for τ, τ ′ with j = j(E ), j ′ = j(E ′))

S ’06: Twisted model over H(d)

Modularity:

1. Over some extension  Hecke character ψ2

2. If X/Q: wt 3 modular form by Livné ’95
(and converse by Elkies–S ’08)
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Singular Enriques surfaces

Singular Enriques surface Y :
universal covering is singular K3 surface X

Basic Problem: Which arithmetic properties carry over
from singular K3 surfaces to singular Enriques surfaces?

– No modularity for Y since H2(Y ) is algebraic.

– Fields of definition?

Theorem. Y singular Enriques surface
such that universal cover X = singular K3 of discriminant d .
Then Y has a model over H(d).

[If you hope for differences between K3 and Enriques: There
will be an interesting twist for singular Enriques surfaces...]

Proof: geometric in nature, combining Shioda–Inose
structure and Kummer sandwich structure
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Shioda–Inose structure revisited

Shioda–Inose structure relies on elliptic fibrations (over
H(d)):

A X
↘ ↙ ↓

Km(A) P1

↓
f
↙

P1

General picture (E 6∼= E ′): the reducible fibers are

I X : 2× II ∗ (∼ root lattice E8)

I Km(A) : II ∗, 2× I ∗0 (∼ root lattice D4)

f is a quadratic base change ramifying at the I ∗0 fibers
(replaced by smooth fibers F0,F∞ in X )
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Involutions

Deck transformation  = Nikulin involution
desingularisation of X/ = Km(A)

hyperelliptic involution −id fiberwise

composition ı = −id ◦ 
desingularisation of X/ı = rational elliptic surface S
= quadratic twist of Km(A)

A X

↘
fı
↙ ↓

f
↘

Km(A) P1 S

↓
f
↙

f
↘ ↓

P1 = P1
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Enriques surfaces

Singular K3
surfaces

Singular Enriques
surfaces

Proof of the
Theorem

Concluding
remarks

Mordell-Weil lattice

NS(X ) = U + 2E8 + MWL(X )(−1)
where U denotes the hyperbolic plane

Here: MWL(X ) ∼= T (X )

pull-back: MWL(Km(A))(2) ↪→ MWL(X ) (both of rank 2)
compare discriminants: =

Conclusion: MW(X )

{
invariant for ∗

anti-invariant for ı∗
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Enriques surfaces

Singular K3
surfaces

Singular Enriques
surfaces

Proof of the
Theorem

Concluding
remarks

Base change type involution

Section P ∈ MW(X )⇒ translation by P =: tP ∈ Aut(X )

Obtain involution of base change type τ = ı ◦ tP on X ,
since here ı ◦ tP = t−P ◦ ı

(”classical” case: P = 2-torsion (cf. Barth–Peters family,
Mukai–Namikawa);
Kondo: special Enriques surfaces;
general case: Hulek-S)

Problem: fixed points of τ?

Clear: Fix(τ) ⊂ Fix(ı) = ramified fibers F0,F∞

Question: how does P specialize at F0,F∞?

Answer lattice theoretically in terms of intersection
behaviour of section on Km(A) with I ∗0 fibers
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Enriques surfaces

Singular K3
surfaces

Singular Enriques
surfaces

Proof of the
Theorem

Concluding
remarks

Base change type involution

Section P ∈ MW(X )⇒ translation by P =: tP ∈ Aut(X )

Obtain involution of base change type τ = ı ◦ tP on X ,
since here ı ◦ tP = t−P ◦ ı

(”classical” case: P = 2-torsion (cf. Barth–Peters family,
Mukai–Namikawa);
Kondo: special Enriques surfaces;
general case: Hulek-S)

Problem: fixed points of τ?

Clear: Fix(τ) ⊂ Fix(ı) = ramified fibers F0,F∞

Question: how does P specialize at F0,F∞?

Answer lattice theoretically in terms of intersection
behaviour of section on Km(A) with I ∗0 fibers



Arithmetic of
singular Enriques

surfaces

Matthias Schütt
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Remember P = f ∗ P ′ for some P ′ ∈ MW(Km(S))
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Enriques involutions on singular K3 surfaces

Proposition
X singular K3 surface of discriminant d 6≡ −3 mod 8,
d 6= −4,−8

(⇐⇒ X admits Enriques involution by Sertöz)
With 62 exceptions, X admits an Enriques involution of base
change type within the framework of Shioda–Inose
structures.

(Exceptions for some cases where necessarily E ∼= E ′)

Extension: Enriques involution can be defined over H(d)

only needed: model of X with P defined over H(d)

use: Gal(Q̄/H(d)) acts through automorphisms on MW(X )

Here: usually Aut(MW(X )) = Aut(T (X )) = Z/2Z,
so Galois action can only be P 7→ −P

=⇒ P defined over quadratic extension of H(d), quadratic
twist of X has P/H(d)
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Enriques surfaces

Singular K3
surfaces

Singular Enriques
surfaces

Proof of the
Theorem

Concluding
remarks

Enriques involutions on singular K3 surfaces

Proposition
X singular K3 surface of discriminant d 6≡ −3 mod 8,
d 6= −4,−8 (⇐⇒ X admits Enriques involution by Sertöz)
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Enriques surfaces

Singular K3
surfaces

Singular Enriques
surfaces

Proof of the
Theorem

Concluding
remarks

Enriques involutions on singular K3 surfaces

Proposition
X singular K3 surface of discriminant d 6≡ −3 mod 8,
d 6= −4,−8 (⇐⇒ X admits Enriques involution by Sertöz)
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Summary so far

Geometric construction of Enriques involutions τ on singular
K3 surfaces within framework of Shioda–Inose structure

Often easy to prove that τ is defined over H(d),
but there are some non-trivial cases left to prove
and there are Enriques involutions not of this type
(for instance use Kondo’s classification of Enriques surfaces
with finite automorphism group)

Brings us back to the theorem:

Y singular Enriques surface
such that universal cover X = singular K3 of discriminant d

Then Y has a model over H(d).
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Outline of the proof

1. X has a model with NS(X ) defined over H(d)
(i.e. generators defined over H(d), or equivalently in
this situation, NS(X ) is Galois invariant).

2. Use Torelli to show that any Enriques involution τ is
defined over H(d) for that model.

Ingredients for 2.:

I Aut(X ) is always discrete (Sterk), so τ is defined over
some number field.

I If a Galois element σ leaves NS(X ) invariant, then τ
and τσ induce the same action on T (X ) and on
NS(X ), so τ = τσ by Torelli.



Arithmetic of
singular Enriques

surfaces

Matthias Schütt
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NS(X ) defined over H(d)

Sufficient by Shioda–Inose structure: MW(X )/H(d)

Know this in case Aut(T (X )) = Z/2Z
(same quadratic twist works for all of MW(X ));
otherwise, our arguments so far only show that one
generator of MW(X ) can always be defined over H(d) while
the other might involve a quadratic extension.

Idea:

1. Study singular Kummer surfaces.

2. Use Kummer sandwich structure for singular K3
surfaces (after Shioda).
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(same quadratic twist works for all of MW(X ));
otherwise, our arguments so far only show that one
generator of MW(X ) can always be defined over H(d) while
the other might involve a quadratic extension.
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Singular Kummer surfaces

A = E × E ′ =⇒ projections induce elliptic fibrations

A 99K Km(A)
↓ ↓
E → P1

Explicitly: E : y2 = f (x), E ′ : y2 = g(x) over H(d)

⇒ Km(A) : f (t)y2 = g(x)

Will use different elliptic fibrations on Km(A) (Oguiso)

(and be less sloppy with notation MWL(Km(A)) which so
far always referred to the elliptic fibration in the
Shioda–Inose structure)
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1st elliptic fibration

Elliptic fibration π : Km(A) = {f (t)y2 = g(x)} → P1
t ,

singular fibers 4× I ∗0 , MW has full 2-torsion over H(4d)

Claim: MWL(Km(A), π) can be defined over H(d).

Proof:
MWL = T (A)(1/2), so same argument as before shows
existence of model with infinite section P over H(d).

Now use Galois-equivariant isomorphism

Hom(E ,E ′) ∼= MWL(Km(A), π)

and apply generator of End(E ) (defined over H(d)!) to P
(or rather to the homomorphism corresponding to P)

Corollary: NS(Km(A)) can be defined over H(4d)

Proof: Fiber components, 2-torsion defined over H(4d)
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Kummer sandwich structure

The elliptic fibration on the singular K3 X from the
Shioda-Inose structure admits a quadratic base change
leading back to Km(A) over H(d).

(ramification at the II ∗ fibers which result in IV ∗ ∼ E6).

Km(A)
↙ ↓ π′

A X P1

↘ ↙ ↓ ↙
Km(A) P1

↓
f
↙

P1

Pull-back: MWL(X )(2) ↪→ MWL(Km(A), π′)

Idea: compare image M with MWL(Km(A), π)
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2nd elliptic fibration

Elliptic fibration π′ : Km(A) = {f (t)y2 = g(x)} → P1
y ,

reducible fibers 2× IV ∗

Shioda’s main feature of Kummer sandwich: Isometry

MWL(Km(A), π)(4) ∼= M = im(MWL(X )(2)↪→MWL(Km(A),π′))

Problem: isomorphism is Galois equivariant over H(4d), but
not necessarily over H(d).
(Since endowing π′ with a section is achieved by fixing a
base point of the cubic pencil {f (t)y2 = g(x)}.)
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Final step of proof

Distinguish two cases:

1. If H(4d)/H(d) has degree 1 or 2, then the cubic pencil
has a H(d)-rational base point.
Galois equivariance =⇒ M can be defined over H(d).

2. If H(4d)/H(d) has degree 3, then we obtain models of
(Km(A), π′) over H(d) with M defined

(a) over a quadratic extension of H(d) (from X ) and
(b) over the cubic Galois extension H(4d) (from π).

Compatibility =⇒ M can be defined over H(d).

Conclusion:
There is a model for (Km(A), π′) with M over H(d), so the
same holds for X with MWL(X ).

Theorem. X has a model with NS(X ) over H(d).
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Final twist: NS(Y )/H(d)?

H2(Y ,Q) = NS(Y )⊗Q = NS(X )τ
∗=1 ⊗Q,

so Y has a model with Num(Y ) defined over H(d):
Galois operates numerically trivial.

Proposition. There are singular Enriques Y such that
NS(Y ) can be defined over H(4d), but not over H(d):
Galois does not operate cohomologically trivial.

Proof: Consider singular Enriques surface Y with elliptic
fibration induced from Shioda–Inose structure.
=⇒ multiple fibers 2F0, 2F∞ at ramification points.

B =
√

(j − 123)(j ′ − 123) ⇒ show: Gal(H(d)(B)/H(d))
interchanges multiple fibers for any model.

(From Km(A) : B ∈ H(4d) since NS(Km(A))/H(4d).)

Example: X = Km(E 2
% ), %2 + %+ 1 = 0: Shioda–Inose

construction for j = 0, j ′ = 603/4 B = 25 · 3 · 11
√
−1.
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Open problems

Classification of singular K3 surfaces and singular Enriques
surfaces over Q or other given number fields.

Same with prescribed field of definition of NS or Num.
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Thank you
&

all the best wishes to
Alessandro, Ciro and Fabrizio!
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