Arithmetic of singular Enriques surfaces

 (joint with Klaus Hulek)Matthias Schütt

Institut für Algebraische Geometrie
Leibniz Universität Hannover

Levico Terme, September 2010

Enriques surfaces

Matthias Schütt

Enriques surfaces

Matthias Schütt

Enriques surfaces

Enriques surface $Y=$ quotient of K3 surface X by a fixed point free involution τ

Classical interest because $q(Y)=p_{g}(Y)=0$, yet Y is not rational $(\kappa(Y)=0)$

Moduli theory induced from lattice-polarized K3 surfaces, but how about the arithmetic of Enriques surfaces?

Enriques surfaces

Enriques surface $Y=$ quotient of K3 surface X by a fixed point free involution τ

Classical interest because $q(Y)=p_{g}(Y)=0$, yet Y is not rational $(\kappa(Y)=0)$

Moduli theory induced from lattice-polarized K3 surfaces, but how about the arithmetic of Enriques surfaces?

Example: potential density of rational points by
Bogomolov-Tschinkel

Enriques surfaces

Enriques surface $Y=$ quotient of K3 surface X by a fixed point free involution τ

Classical interest because $q(Y)=p_{g}(Y)=0$, yet Y is not rational $(\kappa(Y)=0)$

Moduli theory induced from lattice-polarized K3 surfaces, but how about the arithmetic of Enriques surfaces?

Example: potential density of rational points by Bogomolov-Tschinkel

Today: fields of definition for specific Enriques surfaces

Enriques surfaces

Enriques surface $Y=$ quotient of K3 surface X by a fixed point free involution τ

Classical interest because $q(Y)=p_{g}(Y)=0$, yet Y is not rational $(\kappa(Y)=0)$

Moduli theory induced from lattice-polarized K3 surfaces, but how about the arithmetic of Enriques surfaces?

Example: potential density of rational points by Bogomolov-Tschinkel

Today: fields of definition for specific Enriques surfaces

- those covered by singular K3 surfaces

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.

Here: work over \mathbb{C},

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.

Here: work over \mathbb{C},
so Picard number $\rho(X) \leq h^{1,1}(X)=20$ (Lefschetz)

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.

Here: work over \mathbb{C},
so Picard number $\rho(X) \leq h^{1,1}(X)=20$ (Lefschetz)
Much of arithmetic concentrated in isolated case $\rho=20$:

```
Singular K3 surfaces
```


Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.

Here: work over \mathbb{C},
so Picard number $\rho(X) \leq h^{1,1}(X)=20$ (Lefschetz)
Much of arithmetic concentrated in isolated case $\rho=20$: singular K3 surfaces

Singular K3 surfaces

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.

Here: work over \mathbb{C},
so Picard number $\rho(X) \leq h^{1,1}(X)=20$ (Lefschetz)
Much of arithmetic concentrated in isolated case $\rho=20$:
singular K3 surfaces (in the sense of exceptional)

Singular K3 surfaces

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.
Here: work over \mathbb{C},
so Picard number $\rho(X) \leq h^{1,1}(X)=20$ (Lefschetz)
Much of arithmetic concentrated in isolated case $\rho=20$:
singular K3 surfaces (in the sense of exceptional)
Example: Fermat quartic

$$
X=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}
$$

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.
Here: work over \mathbb{C},
so Picard number $\rho(X) \leq h^{1,1}(X)=20$ (Lefschetz)
Much of arithmetic concentrated in isolated case $\rho=20$:
singular K3 surfaces (in the sense of exceptional)
Example: Fermat quartic

$$
X=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}
$$

48 lines have intersection matrix of rank 20 and discriminant -64 ; hence they generate $\operatorname{NS}(X)$ up to finite index.

Singular K3 surfaces

K3 surface X : smooth, projective surface with $h^{1}\left(X, \mathcal{O}_{X}\right)=0, \omega_{X}=\mathcal{O}_{X}$.
Here: work over \mathbb{C},
so Picard number $\rho(X) \leq h^{1,1}(X)=20$ (Lefschetz)
Much of arithmetic concentrated in isolated case $\rho=20$:
singular K3 surfaces (in the sense of exceptional)
Example: Fermat quartic

$$
X=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}
$$

48 lines have intersection matrix of rank 20 and discriminant -64 ; hence they generate $\mathrm{NS}(X)$ up to finite index.
[Non-trivial: showing that the lines generate $\operatorname{NS}(X)$.]

Singular K3 surfaces

Torelli for singular K3 surfaces

Transcendental lattice $T(X)=\mathrm{NS}(X)^{\perp} \subset H^{2}(X, \mathbb{Z})$

Singular K3 surfaces

Singular Enriques surfaces

Proof of the
Theorem
Concluding
remarks

Torelli for singular K3 surfaces

Transcendental lattice $T(X)=\mathrm{NS}(X)^{\perp} \subset H^{2}(X, \mathbb{Z})$
Positive-definite, even, integral quadratic form

Singular K3 surfaces

Torelli for singular K3 surfaces

Transcendental lattice $T(X)=\mathrm{NS}(X)^{\perp} \subset H^{2}(X, \mathbb{Z})$
Positive-definite, even, integral quadratic form given by 2×2 matrix $Q(X)$ (up to conjugation in $\operatorname{SL}(2, \mathbb{Z})$):

$$
Q(X)=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right)
$$

Singular K3

 surfaces
Torelli for singular K3 surfaces

Transcendental lattice $T(X)=\mathrm{NS}(X)^{\perp} \subset H^{2}(X, \mathbb{Z})$
Positive-definite, even, integral quadratic form given by 2×2 matrix $Q(X)$ (up to conjugation in $\operatorname{SL}(2, \mathbb{Z})$):

$$
Q(X)=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right)
$$

Singular K3

 surfacesHere $a, b, c \in \mathbb{Z}, a, c>0$ and discriminant $d=b^{2}-4 a c<0$.

Torelli for singular K3 surfaces

Transcendental lattice $T(X)=\mathrm{NS}(X)^{\perp} \subset H^{2}(X, \mathbb{Z})$
Positive-definite, even, integral quadratic form given by 2×2 matrix $Q(X)$ (up to conjugation in $\operatorname{SL}(2, \mathbb{Z})$):

$$
Q(X)=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right)
$$

Here $a, b, c \in \mathbb{Z}, a, c>0$ and discriminant $d=b^{2}-4 a c<0$.

Torelli: $X \cong Y \Longleftrightarrow T(X) \cong T(Y)$

Surjectivity of period map

Statement: All 2×2 matrices Q are attained by

Surjectivity of period map

Statement: All 2×2 matrices Q are attained by

1. singular abelian surfaces $(\rho(A)=4)$ [Shioda-Mitani '74]
```
Singular K3 surfaces
```


Surjectivity of period map

Statement: All 2×2 matrices Q are attained by

1. singular abelian surfaces $(\rho(A)=4)$ [Shioda-Mitani '74]
2. singular K3 surfaces [Shioda-Inose '76]

Surjectivity of period map

Statement: All 2×2 matrices Q are attained by

1. singular abelian surfaces $(\rho(A)=4)$ [Shioda-Mitani '74]
2. singular K3 surfaces [Shioda-Inose '76]

Proof for 1.: constructive

Singular K3 surfaces

Surjectivity of period map

Statement: All 2×2 matrices Q are attained by

1. singular abelian surfaces $(\rho(A)=4)$ [Shioda-Mitani '74]
2. singular K3 surfaces [Shioda-Inose '76]

Proof for 1.: constructive $A=E_{\tau} \times E_{\tau^{\prime}}$

Singular K3 surfaces

Surjectivity of period map

Statement: All 2×2 matrices Q are attained by

1. singular abelian surfaces $(\rho(A)=4)$ [Shioda-Mitani '74]
2. singular K3 surfaces [Shioda-Inose '76]

Proof for 1.: constructive $A=E_{\tau} \times E_{\tau^{\prime}}$ for complex tori $E_{\tau}=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$

$$
\tau=\frac{-b+\sqrt{d}}{2 a}, \quad \tau^{\prime}=\frac{b+\sqrt{d}}{2}
$$

Surjectivity of period map

Statement: All 2×2 matrices Q are attained by

1. singular abelian surfaces $(\rho(A)=4)$ [Shioda-Mitani '74]
2. singular K3 surfaces [Shioda-Inose '76]

Proof for 1.: constructive $A=E_{\tau} \times E_{\tau^{\prime}}$ for complex tori $E_{\tau}=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$

$$
\tau=\frac{-b+\sqrt{d}}{2 a}, \quad \tau^{\prime}=\frac{b+\sqrt{d}}{2}
$$

Subtle point for 2.: Kummer surfaces have

$$
T(\operatorname{Km}(A))=T(A)(2)
$$

so Kummer surfaces do not suffice to prove surjectivity.

Shioda-Inose structure

Instead: exhibit a double covering X of $\operatorname{Km}(A)$ that is K 3 and recovers $T(A)=T(X)$

Shioda-Inose structure

Instead: exhibit a double covering X of $\operatorname{Km}(A)$ that is K 3 and recovers $T(A)=T(X)$

Shioda-Inose structure

Instead: exhibit a double covering X of $\operatorname{Km}(A)$ that is K 3 and recovers $T(A)=T(X)$

(This construction was extended to certain K3 surfaces of Picard number $\rho \geq 17$ by Morrison.)

Shioda-Inose structure

Instead: exhibit a double covering X of $\operatorname{Km}(A)$ that is K 3 and recovers $T(A)=T(X)$

(This construction was extended to certain K3 surfaces of Picard number $\rho \geq 17$ by Morrison.)

Example: Fermat quartic:

Shioda-Inose structure

Instead: exhibit a double covering X of $\operatorname{Km}(A)$ that is K 3 and recovers $T(A)=T(X)$

(This construction was extended to certain K3 surfaces of Picard number $\rho \geq 17$ by Morrison.)
Example: Fermat quartic: $Q(X)=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$.

Shioda-Inose structure

Instead: exhibit a double covering X of $\operatorname{Km}(A)$ that is K 3 and recovers $T(A)=T(X)$

(This construction was extended to certain K3 surfaces of Picard number $\rho \geq 17$ by Morrison.)
Example: Fermat quartic: $Q(X)=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$.

1. $X=\operatorname{Km}\left(E_{i} \times E_{2 i}\right)$.

Shioda-Inose structure

Instead: exhibit a double covering X of $\operatorname{Km}(A)$ that is K 3 and recovers $T(A)=T(X)$

(This construction was extended to certain K3 surfaces of Picard number $\rho \geq 17$ by Morrison.)
Example: Fermat quartic: $Q(X)=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$.

1. $X=\operatorname{Km}\left(E_{i} \times E_{2 i}\right)$.
2. Shioda-Inose surface for $E_{i} \times E_{4 i}$.

Singular K3 surfaces

Interlude: CM elliptic curves

Matthias Schütt
$E^{\prime}=E_{\tau^{\prime}}$ as above \Longrightarrow complex multiplication (CM) by an order in $K=\mathbb{Q}(\sqrt{d})$

Singular K3 surfaces

Singular Enriques surfaces

Proof of the
Theorem
Concluding
remarks

Interlude: CM elliptic curves

Matthias Schütt
$E^{\prime}=E_{\tau^{\prime}}$ as above \Longrightarrow complex multiplication (CM) by an order in $K=\mathbb{Q}(\sqrt{d})$

Shimura: $j\left(E^{\prime}\right)$ generates ring class field $H(d)$ over K

Singular K3 surfaces

Singular Enriques surfaces

Proof of the
Theorem
Concluding
remarks

Interlude: CM elliptic curves

$E^{\prime}=E_{\tau^{\prime}}$ as above \Longrightarrow complex multiplication (CM) by an order in $K=\mathbb{Q}(\sqrt{d})$

Shimura: $j\left(E^{\prime}\right)$ generates ring class field $H(d)$ over K
$=$ abelian extension of K with $\operatorname{Gal}(H(d) / K)=C l(d)$

Singular K3 surfaces

Singular Enriques surfaces

Interlude: CM elliptic curves

$E^{\prime}=E_{\tau^{\prime}}$ as above \Longrightarrow complex multiplication (CM) by an order in $K=\mathbb{Q}(\sqrt{d})$

Shimura: $j\left(E^{\prime}\right)$ generates ring class field $H(d)$ over K
$=$ abelian extension of K with $\operatorname{Gal}(H(d) / K)=C l(d)$
(class group consisting of primitive quadratic forms Q of discriminant d with Gauss composition)

Interlude: CM elliptic curves

$E^{\prime}=E_{\tau^{\prime}}$ as above \Longrightarrow complex multiplication (CM) by an order in $K=\mathbb{Q}(\sqrt{d})$

Shimura: $j\left(E^{\prime}\right)$ generates ring class field $H(d)$ over K
$=$ abelian extension of K with $\operatorname{Gal}(H(d) / K)=C l(d)$
(class group consisting of primitive quadratic forms Q of discriminant d with Gauss composition)

Modularity: L-function described by Hecke character ψ

Interlude: CM elliptic curves

$E^{\prime}=E_{\tau^{\prime}}$ as above \Longrightarrow complex multiplication (CM) by an order in $K=\mathbb{Q}(\sqrt{d})$

Shimura: $j\left(E^{\prime}\right)$ generates ring class field $H(d)$ over K
$=$ abelian extension of K with $\operatorname{Gal}(H(d) / K)=C l(d)$
(class group consisting of primitive quadratic forms Q of discriminant d with Gauss composition)

Modularity: L-function described by Hecke character ψ
Consequence: singular abelian surface A defined over $H(d)$, modular $\left(\rightsquigarrow \psi^{2}\right)$

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field,

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field, but a priori extension involved in double covering $X \rightarrow \operatorname{Km}(A)$.

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field, but a priori extension involved in double covering $X \rightarrow \operatorname{Km}(A)$.

Inose '77: Explicit model as quartic in \mathbb{P}^{3} over extension of $H(d)$ by $\sqrt[3]{j j^{\prime}}$ and $\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)}$

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field, but a priori extension involved in double covering $X \rightarrow \operatorname{Km}(A)$.

Inose '77: Explicit model as quartic in \mathbb{P}^{3} over extension of $H(d)$ by $\sqrt[3]{j j^{\prime}}$ and $\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)}$
(Weber functions for τ, τ^{\prime} with $j=j(E), j^{\prime}=j\left(E^{\prime}\right)$)

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field, but a priori extension involved in double covering $X \rightarrow \operatorname{Km}(A)$.

Inose '77: Explicit model as quartic in \mathbb{P}^{3} over extension of $H(d)$ by $\sqrt[3]{j j^{\prime}}$ and $\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)}$
(Weber functions for τ, τ^{\prime} with $j=j(E), j^{\prime}=j\left(E^{\prime}\right)$)
S '06: Twisted model over $H(d)$

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field, but a priori extension involved in double covering $X \rightarrow \operatorname{Km}(A)$.

Inose '77: Explicit model as quartic in \mathbb{P}^{3} over extension of $H(d)$ by $\sqrt[3]{j j^{\prime}}$ and $\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)}$
(Weber functions for τ, τ^{\prime} with $j=j(E), j^{\prime}=j\left(E^{\prime}\right)$)
S '06: Twisted model over $H(d)$

Modularity:

1. Over some extension \rightsquigarrow Hecke character ψ^{2}

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field, but a priori extension involved in double covering $X \rightarrow \operatorname{Km}(A)$.

Inose '77: Explicit model as quartic in \mathbb{P}^{3} over extension of $H(d)$ by $\sqrt[3]{j^{\prime}}$ and $\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)}$
(Weber functions for τ, τ^{\prime} with $j=j(E), j^{\prime}=j\left(E^{\prime}\right)$)
S '06: Twisted model over $H(d)$

Modularity:

1. Over some extension \rightsquigarrow Hecke character ψ^{2}
2. If X / \mathbb{Q} : wt 3 modular form by Livné '95

Arithmetic of singular K3 surfaces

Obtain from Shioda-Inose structure: singular K3 X defined over some number field, but a priori extension involved in double covering $X \rightarrow \operatorname{Km}(A)$.

Inose '77: Explicit model as quartic in \mathbb{P}^{3} over extension of $H(d)$ by $\sqrt[3]{j j^{\prime}}$ and $\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)}$
(Weber functions for τ, τ^{\prime} with $j=j(E), j^{\prime}=j\left(E^{\prime}\right)$)
S '06: Twisted model over $H(d)$

Modularity:

1. Over some extension \rightsquigarrow Hecke character ψ^{2}
2. If X / \mathbb{Q} : wt 3 modular form by Livné '95 (and converse by Elkies-S '08)

Singular Enriques surfaces

Singular Enriques surface Y :
 universal covering is singular K3 surface X

Singular Enriques surfaces

Singular Enriques surface Y :

universal covering is singular K3 surface X
Basic Problem: Which arithmetic properties carry over from singular K3 surfaces to singular Enriques surfaces?

Singular Enriques surfaces

Singular Enriques surface Y :

universal covering is singular K3 surface X
Basic Problem: Which arithmetic properties carry over from singular K3 surfaces to singular Enriques surfaces?

- No modularity for Y since $H^{2}(Y)$ is algebraic.

Singular Enriques surfaces

Singular Enriques surface Y :

universal covering is singular K3 surface X
Basic Problem: Which arithmetic properties carry over from singular K3 surfaces to singular Enriques surfaces?

- No modularity for Y since $H^{2}(Y)$ is algebraic.
- Fields of definition?

Singular Enriques surfaces

Singular Enriques surface Y :

universal covering is singular K3 surface X
Basic Problem: Which arithmetic properties carry over from singular K3 surfaces to singular Enriques surfaces?

- No modularity for Y since $H^{2}(Y)$ is algebraic.
- Fields of definition?

Theorem. Y singular Enriques surface such that universal cover $X=$ singular K3 of discriminant d.

Singular Enriques surfaces

Singular Enriques surface Y :

universal covering is singular K3 surface X
Basic Problem: Which arithmetic properties carry over from singular K3 surfaces to singular Enriques surfaces?

- No modularity for Y since $H^{2}(Y)$ is algebraic.
- Fields of definition?

Theorem. Y singular Enriques surface such that universal cover $X=$ singular K 3 of discriminant d. Then Y has a model over $H(d)$.

Singular Enriques surfaces

Singular Enriques surface Y :

universal covering is singular K3 surface X
Basic Problem: Which arithmetic properties carry over from singular K3 surfaces to singular Enriques surfaces?

- No modularity for Y since $H^{2}(Y)$ is algebraic.
- Fields of definition?

Theorem. Y singular Enriques surface such that universal cover $X=$ singular K 3 of discriminant d. Then Y has a model over $H(d)$.
[If you hope for differences between K3 and Enriques: There will be an interesting twist for singular Enriques surfaces...]

Singular Enriques surfaces

Singular Enriques surface Y :

Basic Problem: Which arithmetic properties carry over from singular K3 surfaces to singular Enriques surfaces?

- No modularity for Y since $H^{2}(Y)$ is algebraic.
- Fields of definition?

Theorem. Y singular Enriques surface such that universal cover $X=$ singular K 3 of discriminant d. Then Y has a model over $H(d)$.
[If you hope for differences between K3 and Enriques: There will be an interesting twist for singular Enriques surfaces...]

Proof: geometric in nature, combining Shioda-Inose structure and Kummer sandwich structure

universal covering is singular K3 surface X

Shioda-Inose structure revisited

Shioda-Inose structure relies on elliptic fibrations (over $H(d))$:

Singular K 3

 surfacesSingular Enriques surfaces

Shioda-Inose structure revisited

Shioda-Inose structure relies on elliptic fibrations (over $H(d))$:

Singular 1 K3

Singular Enriques surfaces

General picture ($E \not \neq E^{\prime}$): the reducible fibers are

Shioda-Inose structure revisited

Shioda-Inose structure relies on elliptic fibrations (over $H(d))$:

General picture ($E \not \approx E^{\prime}$): the reducible fibers are

- $X: 2 \times I^{*}\left(\sim\right.$ root lattice $\left.E_{8}\right)$
- $\operatorname{Km}(A): I^{*}, 2 \times I_{0}^{*}\left(\sim\right.$ root lattice $\left.D_{4}\right)$

Shioda-Inose structure revisited

Shioda-Inose structure relies on elliptic fibrations (over $H(d))$:

General picture ($E \not \approx E^{\prime}$): the reducible fibers are

- $X: 2 \times I I^{*}\left(\sim\right.$ root lattice $\left.E_{8}\right)$
- $\operatorname{Km}(A): I^{*}, 2 \times I_{0}^{*}\left(\sim\right.$ root lattice $\left.D_{4}\right)$
f is a quadratic base change ramifying at the I_{0}^{*} fibers (replaced by smooth fibers F_{0}, F_{∞} in X)

Involutions

Deck transformation $\jmath=$ Nikulin involution desingularisation of $X / \jmath=\operatorname{Km}(A)$

Enriques surfaces

Singulat ko

surfaces

Singular Enriques surfaces

Involutions

Deck transformation $\jmath=$ Nikulin involution desingularisation of $X / \jmath=\operatorname{Km}(A)$
hyperelliptic involution -id fiberwise

Involutions

Deck transformation $\jmath=$ Nikulin involution desingularisation of $X / \jmath=\operatorname{Km}(A)$
hyperelliptic involution - id fiberwise
composition $\imath=-i d \circ \jmath$

Involutions

Deck transformation $\jmath=$ Nikulin involution desingularisation of $X / \jmath=\operatorname{Km}(A)$
hyperelliptic involution - id fiberwise
composition $\imath=-i d \circ \jmath$ desingularisation of $X / \imath=$ rational elliptic surface S

Involutions

Deck transformation $\jmath=$ Nikulin involution desingularisation of $X / \jmath=\operatorname{Km}(A)$
hyperelliptic involution -id fiberwise
composition $\imath=-i d \circ \jmath$ desingularisation of $X / \imath=$ rational elliptic surface S $=$ quadratic twist of $\operatorname{Km}(A)$

Involutions

Deck transformation $\jmath=$ Nikulin involution desingularisation of $X / \jmath=\operatorname{Km}(A)$
hyperelliptic involution - id fiberwise
composition $\imath=-i d \circ \jmath$ desingularisation of $X / \imath=$ rational elliptic surface S $=$ quadratic twist of $\operatorname{Km}(A)$

A

Mordell-Weil lattice

$\mathrm{NS}(X)=U+2 E_{8}+\operatorname{MWL}(X)(-1)$
 where U denotes the hyperbolic plane

Arithmetic of singular Enriques surfaces

Matthias Schütt

Enriques surfaces

Singular $K 3$

surfaces

Singular Enriques surfaces

Mordell-Weil lattice

$\operatorname{NS}(X)=U+2 E_{8}+\operatorname{MWL}(X)(-1)$
where U denotes the hyperbolic plane
Here: $\operatorname{MWL}(X) \cong T(X)$

Mordell-Weil lattice

$\operatorname{NS}(X)=U+2 E_{8}+\operatorname{MWL}(X)(-1)$
where U denotes the hyperbolic plane
Here: $\operatorname{MWL}(X) \cong T(X)$
pull-back: $\operatorname{MWL}(\operatorname{Km}(A))(2) \hookrightarrow \operatorname{MWL}(X)$ (both of rank 2)

Mordell-Weil lattice

$\operatorname{NS}(X)=U+2 E_{8}+\operatorname{MWL}(X)(-1)$
where U denotes the hyperbolic plane
Here: $\operatorname{MWL}(X) \cong T(X)$
pull-back: $\operatorname{MWL}(\operatorname{Km}(A))(2) \hookrightarrow \operatorname{MWL}(X)$ (both of rank 2) compare discriminants: =

Simpulat ikn

Singular Enriques surfaces

Mordell-Weil lattice

$\operatorname{NS}(X)=U+2 E_{8}+\operatorname{MWL}(X)(-1)$
where U denotes the hyperbolic plane
Here: $\operatorname{MWL}(X) \cong T(X)$
pull-back: $\operatorname{MWL}(\operatorname{Km}(A))(2) \hookrightarrow \operatorname{MWL}(X)$ (both of rank 2) compare discriminants: =

Conclusion: $\operatorname{MW}(X)\left\{\begin{array}{l}\text { invariant for } J^{*} \\ \text { anti-invariant for } \imath^{*}\end{array}\right.$

Base change type involution

Base change type involution

Section $P \in \operatorname{MW}(X) \Rightarrow$ translation by $P=: t_{P} \in \operatorname{Aut}(X)$
Obtain involution of base change type $\tau=\imath \circ t_{P}$ on X,
since here $\imath \circ t_{P}=t_{-P} \circ \imath$

Base change type involution

Section $P \in \operatorname{MW}(X) \Rightarrow$ translation by $P=: t_{P} \in \operatorname{Aut}(X)$
Obtain involution of base change type $\tau=\imath \circ t_{P}$ on X, since here $\imath \circ t_{P}=t_{-P} \circ \imath$
("classical" case: $P=2$-torsion (cf. Barth-Peters family, Mukai-Namikawa);
Kondo: special Enriques surfaces; general case: Hulek-S)

Base change type involution

Section $P \in \operatorname{MW}(X) \Rightarrow$ translation by $P=: t_{P} \in \operatorname{Aut}(X)$
Obtain involution of base change type $\tau=\imath \circ t_{p}$ on X, since here $\imath \circ t_{P}=t_{-P} \circ \imath$
("classical" case: $P=2$-torsion (cf. Barth-Peters family, Mukai-Namikawa);
Kondo: special Enriques surfaces; general case: Hulek-S)

Problem: fixed points of τ ?

Base change type involution

Section $P \in \operatorname{MW}(X) \Rightarrow$ translation by $P=: t_{p} \in \operatorname{Aut}(X)$
Obtain involution of base change type $\tau=\imath \circ t_{p}$ on X, since here $\imath \circ t_{P}=t_{-P} \circ \imath$
("classical" case: $P=2$-torsion (cf. Barth-Peters family, Mukai-Namikawa);
Kondo: special Enriques surfaces; general case: Hulek-S)

Problem: fixed points of τ ?
Clear: $\operatorname{Fix}(\tau) \subset \operatorname{Fix}(\imath)=$ ramified fibers F_{0}, F_{∞}

Base change type involution

Section $P \in \operatorname{MW}(X) \Rightarrow$ translation by $P=: t_{p} \in \operatorname{Aut}(X)$ Obtain involution of base change type $\tau=\imath \circ t_{p}$ on X, since here $\imath \circ t_{P}=t_{-P} \circ \imath$
("classical" case: $P=2$-torsion (cf. Barth-Peters family, Mukai-Namikawa);
Kondo: special Enriques surfaces; general case: Hulek-S)

Problem: fixed points of τ ?
Clear: $\operatorname{Fix}(\tau) \subset \operatorname{Fix}(\imath)=$ ramified fibers F_{0}, F_{∞}
Question: how does P specialize at F_{0}, F_{∞} ?

Base change type involution

Section $P \in \operatorname{MW}(X) \Rightarrow$ translation by $P=: t_{P} \in \operatorname{Aut}(X)$
Obtain involution of base change type $\tau=\imath \circ t_{p}$ on X, since here $\imath \circ t_{P}=t_{-P} \circ \imath$
("classical" case: $P=2$-torsion (cf. Barth-Peters family, Mukai-Namikawa);
Kondo: special Enriques surfaces; general case: Hulek-S)

Problem: fixed points of τ ?
Clear: $\operatorname{Fix}(\tau) \subset \operatorname{Fix}(\imath)=$ ramified fibers F_{0}, F_{∞}
Question: how does P specialize at F_{0}, F_{∞} ?
Answer lattice theoretically in terms of intersection behaviour of section on $\operatorname{Km}(A)$ with ι_{0}^{*} fibers

Pictures

Remember $P=f_{j}^{*} P^{\prime}$ for some $P^{\prime} \in \operatorname{MW}(\operatorname{Km}(S))$

Singular Ko

surfaces

Singular Enriques surfaces

Pictures

Remember $P=f_{j}^{*} P^{\prime}$ for some $P^{\prime} \in \operatorname{MW}(\operatorname{Km}(S))$

Enriques involution:

Arithmetic of singular Enriques surfaces

Matthias Schütt

Singular Enriques surfaces

Proof of the

Theorem
Concluding
remarks

Pictures

Remember $P=f_{j}^{*} P^{\prime}$ for some $P^{\prime} \in \operatorname{MW}(\operatorname{Km}(S))$
Enriques involution:

Singular Enriques surfaces

No Enriques involution:

Enriques involutions on singular K3 surfaces

Proposition
 X singular K3 surface of discriminant $d \not \equiv-3 \bmod 8$,
 $d \neq-4,-8$

Enriques involutions on singular K3 surfaces

Proposition

X singular K 3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz)

Enriques involutions on singular K3 surfaces

Proposition

X singular K 3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz) With 62 exceptions, X admits an Enriques involution of base change type within the framework of Shioda-Inose structures.

Enriques involutions on singular K3 surfaces

Proposition

X singular K 3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz)
With 62 exceptions, X admits an Enriques involution of base
change type within the framework of Shioda-Inose $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz)
With 62 exceptions, X admits an Enriques involution of base
change type within the framework of Shioda-Inose $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by
With 62 exceptions, X admits an Enriques involution
change type within the framework of Shioda-Inose structures.
(Exceptions for some cases where necessarily $E \cong E^{\prime}$)

Enriques involutions on singular K3 surfaces

Proposition

X singular K3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz)
With 62 exceptions, X admits an Enriques involution of base $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz)
With 62 exceptions, X admits an Enriques involution of base change type within the framework of Shioda-Inose structures.
(Exceptions for some cases where necessarily $E \cong E^{\prime}$)
Extension: Enriques involution can be defined over $H(d)$

Enriques involutions on singular K3 surfaces

Proposition

X singular K3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz) With 62 exceptions, X admits an Enriques involution of base change type within the framework of Shioda-Inose structures.
(Exceptions for some cases where necessarily $E \cong E^{\prime}$)
Extension: Enriques involution can be defined over $H(d)$ only needed: model of X with P defined over $H(d)$

Proposition

X singular K 3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz) With 62 exceptions, X admits an Enriques involution of base change type within the framework of Shioda-Inose structures.
(Exceptions for some cases where necessarily $E \cong E^{\prime}$)
Extension: Enriques involution can be defined over $H(d)$ only needed: model of X with P defined over $H(d)$ use: $\operatorname{Gal}(\overline{\mathbb{Q}} / H(d))$ acts through automorphisms on $\operatorname{MW}(X)$

Proposition

X singular K 3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz) With 62 exceptions, X admits an Enriques involution of base change type within the framework of Shioda-Inose structures.
(Exceptions for some cases where necessarily $E \cong E^{\prime}$)
Extension: Enriques involution can be defined over $H(d)$ only needed: model of X with P defined over $H(d)$ use: $\operatorname{Gal}(\overline{\mathbb{Q}} / H(d))$ acts through automorphisms on MW (X) Here: usually $\operatorname{Aut}(\operatorname{MW}(X))=\operatorname{Aut}(T(X))=\mathbb{Z} / 2 \mathbb{Z}$,

Proposition

X singular K 3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz) With 62 exceptions, X admits an Enriques involution of base change type within the framework of Shioda-Inose structures.
(Exceptions for some cases where necessarily $E \cong E^{\prime}$)
Extension: Enriques involution can be defined over $H(d)$ only needed: model of X with P defined over $H(d)$ use: $\operatorname{Gal}(\overline{\mathbb{Q}} / H(d))$ acts through automorphisms on $\operatorname{MW}(X)$ Here: usually $\operatorname{Aut}(\operatorname{MW}(X))=\operatorname{Aut}(T(X))=\mathbb{Z} / 2 \mathbb{Z}$, so Galois action can only be $P \mapsto-P$

Proposition

X singular K 3 surface of discriminant $d \not \equiv-3 \bmod 8$, $d \neq-4,-8 \quad(\Longleftrightarrow X$ admits Enriques involution by Sertöz) With 62 exceptions, X admits an Enriques involution of base change type within the framework of Shioda-Inose structures.
(Exceptions for some cases where necessarily $E \cong E^{\prime}$)
Extension: Enriques involution can be defined over $H(d)$ only needed: model of X with P defined over $H(d)$ use: $\operatorname{Gal}(\overline{\mathbb{Q}} / H(d))$ acts through automorphisms on $\operatorname{MW}(X)$ Here: usually $\operatorname{Aut}(\operatorname{MW}(X))=\operatorname{Aut}(T(X))=\mathbb{Z} / 2 \mathbb{Z}$, so Galois action can only be $P \mapsto-P$
$\Longrightarrow P$ defined over quadratic extension of $H(d)$, quadratic twist of X has $P / H(d)$

Summary so far

Geometric construction of Enriques involutions τ on singular K3 surfaces within framework of Shioda-Inose structure

Summary so far

Geometric construction of Enriques involutions τ on singular K3 surfaces within framework of Shioda-Inose structure

Often easy to prove that τ is defined over $H(d)$,

Enriques surfaces

Summary so far

Geometric construction of Enriques involutions τ on singular K3 surfaces within framework of Shioda-Inose structure

Often easy to prove that τ is defined over $H(d)$, but there are some non-trivial cases left to prove

Summary so far

Geometric construction of Enriques involutions τ on singular K3 surfaces within framework of Shioda-Inose structure

Often easy to prove that τ is defined over $H(d)$, but there are some non-trivial cases left to prove and there are Enriques involutions not of this type (for instance use Kondo's classification of Enriques surfaces with finite automorphism group)

Summary so far

Geometric construction of Enriques involutions τ on singular K3 surfaces within framework of Shioda-Inose structure

Often easy to prove that τ is defined over $H(d)$, but there are some non-trivial cases left to prove and there are Enriques involutions not of this type (for instance use Kondo's classification of Enriques surfaces with finite automorphism group)

Brings us back to the theorem:

Summary so far

Geometric construction of Enriques involutions τ on singular K3 surfaces within framework of Shioda-Inose structure

Often easy to prove that τ is defined over $H(d)$, but there are some non-trivial cases left to prove and there are Enriques involutions not of this type (for instance use Kondo's classification of Enriques surfaces with finite automorphism group)

Brings us back to the theorem:
Y singular Enriques surface
such that universal cover $X=$ singular K3 of discriminant d

Summary so far

Geometric construction of Enriques involutions τ on singular K3 surfaces within framework of Shioda-Inose structure

Often easy to prove that τ is defined over $H(d)$, but there are some non-trivial cases left to prove and there are Enriques involutions not of this type (for instance use Kondo's classification of Enriques surfaces with finite automorphism group)

Brings us back to the theorem:
Y singular Enriques surface
such that universal cover $X=$ singular K3 of discriminant d
Then Y has a model over $H(d)$.

Outline of the proof

1. X has a model with $\mathrm{NS}(X)$ defined over $H(d)$
(i.e. generators defined over $H(d)$, or equivalently in this situation, $\mathrm{NS}(X)$ is Galois invariant).

Outline of the proof

1. X has a model with $\operatorname{NS}(X)$ defined over $H(d)$ (i.e. generators defined over $H(d)$, or equivalently in this situation, $\mathrm{NS}(X)$ is Galois invariant).
2. Use Torelli to show that any Enriques involution τ is defined over $H(d)$ for that model.

Outline of the proof

1. X has a model with $\mathrm{NS}(X)$ defined over $H(d)$ (i.e. generators defined over $H(d)$, or equivalently in this situation, $\mathrm{NS}(X)$ is Galois invariant).
2. Use Torelli to show that any Enriques involution τ is defined over $H(d)$ for that model.

Ingredients for 2.:

- Aut (X) is always discrete (Sterk), so τ is defined over some number field.

Outline of the proof

1. X has a model with $\operatorname{NS}(X)$ defined over $H(d)$ (i.e. generators defined over $H(d)$, or equivalently in this situation, $\mathrm{NS}(X)$ is Galois invariant).
2. Use Torelli to show that any Enriques involution τ is defined over $H(d)$ for that model.

Ingredients for 2.:

- Aut (X) is always discrete (Sterk), so τ is defined over some number field.
- If a Galois element σ leaves $\operatorname{NS}(X)$ invariant, then τ and τ^{σ} induce the same action on $T(X)$ and on $\mathrm{NS}(X)$, so $\tau=\tau^{\sigma}$ by Torelli.

Sufficient by Shioda-Inose structure: $\operatorname{MW}(X) / H(d)$

Sufficient by Shioda-Inose structure: $\mathrm{MW}(X) / H(d)$
Know this in case $\operatorname{Aut}(T(X))=\mathbb{Z} / 2 \mathbb{Z}$ (same quadratic twist works for all of $\operatorname{MW}(X)$);

NS (X) defined over $H(d)$

Sufficient by Shioda-Inose structure: $\mathrm{MW}(X) / H(d)$
Know this in case $\operatorname{Aut}(T(X))=\mathbb{Z} / 2 \mathbb{Z}$ (same quadratic twist works for all of MW (X)); otherwise, our arguments so far only show that one generator of MW (X) can always be defined over $H(d)$ while the other might involve a quadratic extension.

NS (X) defined over $H(d)$

Sufficient by Shioda-Inose structure: $\mathrm{MW}(X) / H(d)$
Know this in case $\operatorname{Aut}(T(X))=\mathbb{Z} / 2 \mathbb{Z}$ (same quadratic twist works for all of MW(X)); otherwise, our arguments so far only show that one generator of $\operatorname{MW}(X)$ can always be defined over $H(d)$ while the other might involve a quadratic extension.

Idea:

1. Study singular Kummer surfaces.

NS (X) defined over $H(d)$

Sufficient by Shioda-Inose structure: $\mathrm{MW}(X) / H(d)$
Know this in case $\operatorname{Aut}(T(X))=\mathbb{Z} / 2 \mathbb{Z}$ (same quadratic twist works for all of $\operatorname{MW}(X)$); otherwise, our arguments so far only show that one generator of MW (X) can always be defined over $H(d)$ while the other might involve a quadratic extension.

Idea:

1. Study singular Kummer surfaces.
2. Use Kummer sandwich structure for singular K3 surfaces (after Shioda).

Singular Kummer surfaces

$A=E \times E^{\prime} \Longrightarrow$ projections induce elliptic fibrations

Singular Kummer surfaces

$A=E \times E^{\prime} \Longrightarrow$ projections induce elliptic fibrations

Explicitly: $E: \quad y^{2}=f(x), \quad E^{\prime}: \quad y^{2}=g(x)$ over $H(d)$

Singular Kummer surfaces

$A=E \times E^{\prime} \Longrightarrow$ projections induce elliptic fibrations

Explicitly: $E: \quad y^{2}=f(x), \quad E^{\prime}: \quad y^{2}=g(x)$ over $H(d)$
$\Rightarrow \operatorname{Km}(A): \quad f(t) y^{2}=g(x)$

Singular Kummer surfaces

$A=E \times E^{\prime} \Longrightarrow$ projections induce elliptic fibrations

Explicitly: $E: \quad y^{2}=f(x), \quad E^{\prime}: \quad y^{2}=g(x)$ over $H(d)$
$\Rightarrow \operatorname{Km}(A): \quad f(t) y^{2}=g(x)$
Will use different elliptic fibrations on $\operatorname{Km}(A)$ (Oguiso)

Singular Kummer surfaces

$A=E \times E^{\prime} \Longrightarrow$ projections induce elliptic fibrations

Explicitly: $E: y^{2}=f(x), \quad E^{\prime}: y^{2}=g(x)$ over $H(d)$
$\Rightarrow \operatorname{Km}(A): \quad f(t) y^{2}=g(x)$
Will use different elliptic fibrations on $\operatorname{Km}(A)$ (Oguiso)
(and be less sloppy with notation MWL $(\operatorname{Km}(A))$ which so far always referred to the elliptic fibration in the Shioda-Inose structure)

1st elliptic fibration

Elliptic fibration $\pi: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{t}^{1}$, singular fibers $4 \times I_{0}^{*}$, MW has full 2-torsion over $H(4 d)$

1st elliptic fibration

Elliptic fibration $\pi: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{t}^{1}$, singular fibers $4 \times I_{0}^{*}$, MW has full 2-torsion over $H(4 d)$

Claim: $\operatorname{MWL}(\operatorname{Km}(A), \pi)$ can be defined over $H(d)$.

1st elliptic fibration

Elliptic fibration $\pi: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{t}^{1}$, singular fibers $4 \times I_{0}^{*}$, MW has full 2-torsion over $H(4 d)$

Claim: $\operatorname{MWL}(\operatorname{Km}(A), \pi)$ can be defined over $H(d)$.

Proof:

MWL $=T(A)(1 / 2)$, so same argument as before shows existence of model with infinite section P over $H(d)$.

1st elliptic fibration

Elliptic fibration $\pi: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{t}^{1}$, singular fibers $4 \times I_{0}^{*}$, MW has full 2-torsion over $H(4 d)$

Claim: $\operatorname{MWL}(\operatorname{Km}(A), \pi)$ can be defined over $H(d)$.
Proof:
MWL $=T(A)(1 / 2)$, so same argument as before shows existence of model with infinite section P over $H(d)$.

Now use Galois-equivariant isomorphism

$$
\operatorname{Hom}\left(E, E^{\prime}\right) \cong \operatorname{MWL}(\operatorname{Km}(A), \pi)
$$

and apply generator of $\operatorname{End}(E)$ (defined over $H(d)!$) to P (or rather to the homomorphism corresponding to P)

Elliptic fibration $\pi: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{t}^{1}$, singular fibers $4 \times I_{0}^{*}$, MW has full 2-torsion over $H(4 d)$
Claim: $\operatorname{MWL}(\operatorname{Km}(A), \pi)$ can be defined over $H(d)$.
Proof:
MWL $=T(A)(1 / 2)$, so same argument as before shows existence of model with infinite section P over $H(d)$.

Now use Galois-equivariant isomorphism

$$
\operatorname{Hom}\left(E, E^{\prime}\right) \cong \operatorname{MWL}(\operatorname{Km}(A), \pi)
$$

and apply generator of $\operatorname{End}(E)$ (defined over $H(d)!$) to P (or rather to the homomorphism corresponding to P)

Elliptic fibration $\pi: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{t}^{1}$, singular fibers $4 \times I_{0}^{*}$, MW has full 2 -torsion over $H(4 d)$
Claim: $\operatorname{MWL}(\operatorname{Km}(A), \pi)$ can be defined over $H(d)$.
Proof:
MWL $=T(A)(1 / 2)$, so same argument as before shows existence of model with infinite section P over $H(d)$.
Now use Galois-equivariant isomorphism

$$
\operatorname{Hom}\left(E, E^{\prime}\right) \cong \operatorname{MWL}(\operatorname{Km}(A), \pi)
$$

and apply generator of $\operatorname{End}(E)$ (defined over $H(d)!$) to P (or rather to the homomorphism corresponding to P)
Corollary: $\operatorname{NS}(\mathrm{Km}(A))$ can be defined over $H(4 d)$
Proof: Fiber components, 2-torsion defined over $H(4 d)$

Kummer sandwich structure

The elliptic fibration on the singular K3 X from the Shioda-Inose structure admits a quadratic base change leading back to $\operatorname{Km}(A)$ over $H(d)$.

Kummer sandwich structure

The elliptic fibration on the singular K3 X from the Shioda-Inose structure admits a quadratic base change leading back to $\operatorname{Km}(A)$ over $H(d)$. (ramification at the $I I^{*}$ fibers which result in $I V^{*} \sim E_{6}$).

Kummer sandwich structure

The elliptic fibration on the singular K3 X from the Shioda-Inose structure admits a quadratic base change leading back to $\operatorname{Km}(A)$ over $H(d)$. (ramification at the $I I^{*}$ fibers which result in $I V^{*} \sim E_{6}$).

Kummer sandwich structure

The elliptic fibration on the singular K3 X from the Shioda-Inose structure admits a quadratic base change leading back to $\operatorname{Km}(A)$ over $H(d)$. (ramification at the $I I^{*}$ fibers which result in $I V^{*} \sim E_{6}$).

Pull-back: $\operatorname{MWL}(X)(2) \hookrightarrow \operatorname{MWL}\left(\operatorname{Km}(A), \pi^{\prime}\right)$

Kummer sandwich structure

The elliptic fibration on the singular K3 X from the Shioda-Inose structure admits a quadratic base change leading back to $\operatorname{Km}(A)$ over $H(d)$. (ramification at the $I I^{*}$ fibers which result in $I V^{*} \sim E_{6}$).

Pull-back: $\operatorname{MWL}(X)(2) \hookrightarrow \operatorname{MWL}\left(\operatorname{Km}(A), \pi^{\prime}\right)$
Idea: compare image M with $\operatorname{MWL}(\operatorname{Km}(A), \pi)$

2nd elliptic fibration

Matthias Schütt

Elliptic fibration $\pi^{\prime}: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{y}^{1}$, reducible fibers $2 \times I V^{*}$

Singular K3 surfaces

Singular Enriques surfaces

Proof of the Theorem

Concluding
remarks

2nd elliptic fibration

Elliptic fibration $\pi^{\prime}: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{y}^{1}$, reducible fibers $2 \times I V^{*}$

Shioda's main feature of Kummer sandwich: Isometry
$\operatorname{MWL}(\operatorname{Km}(A), \pi)(4) \cong M=i m\left(\operatorname{MWL}(X)(2) \hookrightarrow \operatorname{MWL}\left(\operatorname{Km}(A), \pi^{\prime}\right)\right)$

2nd elliptic fibration

Elliptic fibration $\pi^{\prime}: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{y}^{1}$, reducible fibers $2 \times I V^{*}$

Shioda's main feature of Kummer sandwich: Isometry
$\operatorname{MWL}(\operatorname{Km}(A), \pi)(4) \cong M=i m\left(\operatorname{MWL}(X)(2) \mapsto \operatorname{MWL}\left(\operatorname{Km}(A), \pi^{\prime}\right)\right)$

Problem: isomorphism is Galois equivariant over $H(4 d)$, but not necessarily over $H(d)$.

2nd elliptic fibration

Elliptic fibration $\pi^{\prime}: \operatorname{Km}(A)=\left\{f(t) y^{2}=g(x)\right\} \rightarrow \mathbb{P}_{y}^{1}$, reducible fibers $2 \times N^{*}$

Shioda's main feature of Kummer sandwich: Isometry
$\operatorname{MWL}(\operatorname{Km}(A), \pi)(4) \cong M=i m\left(\operatorname{MWL}(X)(2) \hookrightarrow \operatorname{MWL}\left(\operatorname{Km}(A), \pi^{\prime}\right)\right)$

Problem: isomorphism is Galois equivariant over $H(4 d)$, but not necessarily over $H(d)$.
(Since endowing π^{\prime} with a section is achieved by fixing a base point of the cubic pencil $\left\{f(t) y^{2}=g(x)\right\}$.)

Final step of proof

Distinguish two cases:

Arithmetic of singular Enriques surfaces

Matthias Schütt

Singular K3

surfaces

Singular Enriques surfaces

Proof of the
Theorem
Concluding
remarks

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.
Galois equivariance $\Longrightarrow M$ can be defined over $H(d)$.

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.
Galois equivariance $\Longrightarrow M$ can be defined over $H(d)$.
2. If $H(4 d) / H(d)$ has degree 3 , then we obtain models of $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ over $H(d)$ with M defined

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.
Galois equivariance $\Longrightarrow M$ can be defined over $H(d)$.
2. If $H(4 d) / H(d)$ has degree 3 , then we obtain models of $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ over $H(d)$ with M defined
(a) over a quadratic extension of $H(d)$ (from X) and

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.
Galois equivariance $\Longrightarrow M$ can be defined over $H(d)$.
2. If $H(4 d) / H(d)$ has degree 3 , then we obtain models of $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ over $H(d)$ with M defined
(a) over a quadratic extension of $H(d)$ (from X) and
(b) over the cubic Galois extension $H(4 d)$ (from π).

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.
Galois equivariance $\Longrightarrow M$ can be defined over $H(d)$.
2. If $H(4 d) / H(d)$ has degree 3 , then we obtain models of $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ over $H(d)$ with M defined
(a) over a quadratic extension of $H(d)$ (from X) and
(b) over the cubic Galois extension $H(4 d)$ (from π).

Compatibility $\Longrightarrow M$ can be defined over $H(d)$.

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.
Galois equivariance $\Longrightarrow M$ can be defined over $H(d)$.
2. If $H(4 d) / H(d)$ has degree 3 , then we obtain models of $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ over $H(d)$ with M defined
(a) over a quadratic extension of $H(d)$ (from X) and
(b) over the cubic Galois extension $H(4 d)$ (from π).

Compatibility $\Longrightarrow M$ can be defined over $H(d)$.

Conclusion:

There is a model for $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ with M over $H(d)$, so the same holds for X with $\operatorname{MWL}(X)$.

Final step of proof

Distinguish two cases:

1. If $H(4 d) / H(d)$ has degree 1 or 2 , then the cubic pencil has a $H(d)$-rational base point.
Galois equivariance $\Longrightarrow M$ can be defined over $H(d)$.
2. If $H(4 d) / H(d)$ has degree 3 , then we obtain models of $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ over $H(d)$ with M defined
(a) over a quadratic extension of $H(d)$ (from X) and
(b) over the cubic Galois extension $H(4 d)$ (from π).

Compatibility $\Longrightarrow M$ can be defined over $H(d)$.

Conclusion:

There is a model for $\left(\operatorname{Km}(A), \pi^{\prime}\right)$ with M over $H(d)$, so the same holds for X with $\operatorname{MWL}(X)$.
Theorem. X has a model with $\operatorname{NS}(X)$ over $H(d)$.

Final twist: $\operatorname{NS}(Y) / H(d)$?

$$
H^{2}(Y, \mathbb{Q})=\operatorname{NS}(Y) \otimes \mathbb{Q}=\operatorname{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q},
$$

Final twist: $\operatorname{NS}(Y) / H(d)$?
$H^{2}(Y, \mathbb{Q})=\operatorname{NS}(Y) \otimes \mathbb{Q}=\operatorname{NS}(X)^{r^{* *}=1} \otimes \mathbb{Q}$, so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:

Final twist: $\operatorname{NS}(Y) / H(d)$?
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$, so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$: Galois operates numerically trivial.

Final twist: $\operatorname{NS}(Y) / H(d)$?
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$, so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$: Galois operates numerically trivial.

Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$:
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$,
so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:
Galois operates numerically trivial.
Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$: Galois does not operate cohomologically trivial.
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$,
so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:
Galois operates numerically trivial.
Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$: Galois does not operate cohomologically trivial.

Proof: Consider singular Enriques surface Y with elliptic fibration induced from Shioda-Inose structure.
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$,
so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:
Galois operates numerically trivial.
Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$: Galois does not operate cohomologically trivial.

Proof: Consider singular Enriques surface Y with elliptic fibration induced from Shioda-Inose structure.
\Longrightarrow multiple fibers $2 F_{0}, 2 F_{\infty}$ at ramification points.
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$,
so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:
Galois operates numerically trivial.
Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$: Galois does not operate cohomologically trivial.

Proof: Consider singular Enriques surface Y with elliptic fibration induced from Shioda-Inose structure.
\Longrightarrow multiple fibers $2 F_{0}, 2 F_{\infty}$ at ramification points.
$B=\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)}$
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$,
so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:
Galois operates numerically trivial.
Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$: Galois does not operate cohomologically trivial.

Proof: Consider singular Enriques surface Y with elliptic fibration induced from Shioda-Inose structure.
\Longrightarrow multiple fibers $2 F_{0}, 2 F_{\infty}$ at ramification points.
$B=\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)} \Rightarrow$ show: $\operatorname{Gal}(H(d)(B) / H(d))$ interchanges multiple fibers for any model.
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$,
so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:
Galois operates numerically trivial.
Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$: Galois does not operate cohomologically trivial.

Proof: Consider singular Enriques surface Y with elliptic fibration induced from Shioda-Inose structure.
\Longrightarrow multiple fibers $2 F_{0}, 2 F_{\infty}$ at ramification points.
$B=\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)} \Rightarrow$ show: $\operatorname{Gal}(H(d)(B) / H(d))$ interchanges multiple fibers for any model.
(From $\operatorname{Km}(A): B \in H(4 d)$ since $\operatorname{NS}(\operatorname{Km}(A)) / H(4 d)$.)

Concluding remarks
$H^{2}(Y, \mathbb{Q})=\mathrm{NS}(Y) \otimes \mathbb{Q}=\mathrm{NS}(X)^{\tau^{*}=1} \otimes \mathbb{Q}$,
so Y has a model with $\operatorname{Num}(Y)$ defined over $H(d)$:
Galois operates numerically trivial.
Proposition. There are singular Enriques Y such that $\mathrm{NS}(Y)$ can be defined over $H(4 d)$, but not over $H(d)$: Galois does not operate cohomologically trivial.

Proof: Consider singular Enriques surface Y with elliptic fibration induced from Shioda-Inose structure.
\Longrightarrow multiple fibers $2 F_{0}, 2 F_{\infty}$ at ramification points.
$B=\sqrt{\left(j-12^{3}\right)\left(j^{\prime}-12^{3}\right)} \Rightarrow$ show: $\operatorname{Gal}(H(d)(B) / H(d))$ interchanges multiple fibers for any model.
(From $\operatorname{Km}(A): B \in H(4 d)$ since $\operatorname{NS}(\operatorname{Km}(A)) / H(4 d)$.)
Example: $X=\operatorname{Km}\left(E_{\varrho}^{2}\right), \varrho^{2}+\varrho+1=0$: Shioda-Inose construction for $j=0, j^{\prime}=60^{3} / 4 \rightsquigarrow B=2^{5} \cdot 3 \cdot 11 \sqrt{-1}$.

Open problems

Classification of singular K3 surfaces and singular Enriques surfaces over \mathbb{Q} or other given number fields.

Open problems

Classification of singular K3 surfaces and singular Enriques surfaces over \mathbb{Q} or other given number fields.

Same with prescribed field of definition of NS or Num.

Thank you

\&
all the best wishes to Alessandro, Ciro and Fabrizio!

Singular Enriques surfaces

Proof of the
Theorem
Concluding
remarks

