Universal Formulas for Counting Nodal Curves on Surfaces

Yu-jong Tzeng

Stanford University Harvard University

Perspectives on Algebraic Varieties September 8, 2010

1 Introduction: Counting Nodal Curves and Previous Results

<回と < 目と < 目と

2 Universal Formulas: Göttsche's Conjecture and Main Theorems

・回 と く ヨ と く ヨ と

- 2 Universal Formulas: Göttsche's Conjecture and Main Theorems
- 3 Algebraic cobordism

向下 イヨト イヨト

- 2 Universal Formulas: Göttsche's Conjecture and Main Theorems
- 3 Algebraic cobordism
- 4 Degeneration formula

向下 イヨト イヨト

1 Introduction: Counting Nodal Curves and Previous Results

- 2 Universal Formulas: Göttsche's Conjecture and Main Theorems
- 3 Algebraic cobordism
- Degeneration formula

Introduction

- S: a smooth projective surface over $\mathbb C$
- L: a line bundle on S

Main Question:

How many reduced curves in |L| which

- have r simple nodes
- 2 contain no higher singularity
- **③** pass through dim |L| r points in general position?

Notation: this kind of curves are called *r*-nodal.

To counting nodal curves, we begin with *well-known* surfaces:

On \mathbb{P}^2 , $\mathcal{O}(d)$: (Ran, Manin, Kontsevich, Harris, Caporaso, Choi, Pandharipande, Fomin, Mikhalkin et. al.)

To counting nodal curves, we begin with *well-known* surfaces:

On \mathbb{P}^2 , $\mathcal{O}(d)$: (Ran, Manin, Kontsevich, Harris, Caporaso, Choi, Pandharipande, Fomin, Mikhalkin et. al.)

• Rational curves: [Kontsevich-Manin, 1994] recursive formulas on *d*

▲□ ▶ ▲ □ ▶ ▲ □ ▶

To counting nodal curves, we begin with *well-known* surfaces:

On \mathbb{P}^2 , $\mathcal{O}(d)$: (Ran, Manin, Kontsevich, Harris, Caporaso, Choi, Pandharipande, Fomin, Mikhalkin et. al.)

- Rational curves: [Kontsevich-Manin, 1994] recursive formulas on *d*
- Arbitrary genus: [Caporaso-Harris, 1998] recursive formulas on *d*, the number of nodes *r* and tangency conditions

To counting nodal curves, we begin with *well-known* surfaces:

On \mathbb{P}^2 , $\mathcal{O}(d)$: (Ran, Manin, Kontsevich, Harris, Caporaso, Choi, Pandharipande, Fomin, Mikhalkin et. al.)

- Rational curves: [Kontsevich-Manin, 1994] recursive formulas on *d*
- Arbitrary genus: [Caporaso-Harris, 1998] recursive formulas on *d*, the number of nodes *r* and tangency conditions

 \implies We can find the number of *r*-nodal curves in $|\mathcal{O}(d)|$, for all *d* and *r*!

▲帰▶ ★ 国▶ ★ 国▶

Previous Results on \mathbb{P}^2 and Hirzebruch surfaces

On \mathbb{P}^2 , $\mathcal{O}(d)$:

 Polynomiality: [Fomin-Mikhalkin, 2009] the number of r-nodal curves in O(d) is a polynomial in d, ∀d ≥ 2r.

Previous Results on \mathbb{P}^2 and Hirzebruch surfaces

On \mathbb{P}^2 , $\mathcal{O}(d)$:

 Polynomiality: [Fomin-Mikhalkin, 2009] the number of r-nodal curves in O(d) is a polynomial in d, ∀d ≥ 2r.

On Hirzebruch surfaces and any line bundle:

• [Vakil, 2000]: Results similar to [Caporaso-Harris] hold.

On K3 surfaces and primitive line bundles *L* (i.e. Pic $S \cong \mathbb{Z}L$)

Yu-jong Tzeng Universal Formulas for Counting Nodal Curves on Surfaces

・ 回 ト ・ ヨ ト ・ ヨ ト

3

On K3 surfaces and primitive line bundles L (i.e. Pic $S \cong \mathbb{Z}L$)

Rational curves: let N_r = the number of r-nodal rational curves in |L| (with 1 + ¹/₂L² = r = g_a).

On K3 surfaces and primitive line bundles L (i.e. Pic $S \cong \mathbb{Z}L$)

Rational curves: let N_r = the number of r-nodal rational curves in |L| (with 1 + ¹/₂L² = r = g_a).

The Yau-Zaslow formula

$$\sum_{r=0}^{\infty} N_r q^{r-1} = \frac{1}{\Delta}.$$

where $\Delta = q \prod_{k>0} (1-q^k)^{24} = \eta^{24}$ is a modular form.

On K3 surfaces and primitive line bundle L (i.e. Pic S ≅ ZL)
Arbitrary genus:

Theorem (Bryan-Leung)

$$\sum_{r\geq 0} \left(\# \text{ of } r\text{-nodal curves in } |L| \right) \left(DG_2 \right)^r = \frac{(DG_2/q)^{\chi(L)}}{\Delta D^2 G_2/q^2}.$$

 G_2 : the second Eisenstein series; $D = q \frac{d}{dq}$; G_2 , DG_2 and D^2G_2 are quasi-modular forms.

Introduction: Counting Nodal Curves and Previous Results

- 2 Universal Formulas: Göttsche's Conjecture and Main Theorems
- 3 Algebraic cobordism
- 4 Degeneration formula

Instead of working on special surfaces, we can work on all surfaces and start with *r* small.

ヨット イヨット イヨッ

Instead of working on special surfaces, we can work on all surfaces and start with *r* small.

Price paid: the line bundle is assumed to be sufficiently ample (relative to r).

Instead of working on special surfaces, we can work on all surfaces and start with *r* small.

Price paid: the line bundle is assumed to be sufficiently ample (relative to r).

• $r \leq 3$: standard intersection theory

向下 イヨト イヨト

Instead of working on special surfaces, we can work on all surfaces and start with *r* small.

Price paid: the line bundle is assumed to be sufficiently ample (relative to r).

- $r \leq 3$: standard intersection theory
- $r \leq 6$: [Vainsencher, 1995]

伺 とう きょう とう とう

Instead of working on special surfaces, we can work on all surfaces and start with *r* small.

Price paid: the line bundle is assumed to be sufficiently ample (relative to r).

- $r \leq 3$: standard intersection theory
- $r \leq 6$: [Vainsencher, 1995]
- *r* ≤ 8: [Kleiman-Piene, 1999]

伺 とう きょう とう とう

Instead of working on special surfaces, we can work on all surfaces and start with r small.

Price paid: the line bundle is assumed to be sufficiently ample (relative to r).

- $r \leq 3$: standard intersection theory
- $r \leq 6$: [Vainsencher, 1995]
- *r* ≤ 8: [Kleiman-Piene, 1999]

They wrote the number of nodal curves explicitly.

Polynomials T_r

Suppose S is a smooth projective surface and L is a sufficiently ample line bundle on S. Let T_r be the number of r-nodal curves in |L|, then Vainsencher proved:

高 とう ヨン うまと

Polynomials T_r

Suppose S is a smooth projective surface and L is a sufficiently ample line bundle on S.

Let T_r be the number of *r*-nodal curves in |L|, then Vainsencher proved:

$$\begin{split} T_1 = & 3L^2 + 2LK_5 + c_2(S) \\ T_2 = & \frac{T_1(-7+T_1) - 6c_1(S)^2 - 25LK - 21L^2}{2} \\ T_3 = & (2T_2(-14+3L^2+2LK+c_2(S)) + T_1(-6c_1(S)^2 - 25LK - 21L^2+40) + (-18c_1(S)^2 - 117LK+672)L^2 \\ & + (-6c_1(S)^2 - 25LK - 21L^2)c_2(S) - 63(L^2)^2 - 50(LK)^2 + (-12c_1(S)^2 + 950)LK + 292c_1(S)^2)/6; \\ T_4 = & \text{longer} \\ T_5 = & \text{longer and longer} \\ T_6 = & \text{you really don't want to know...} \end{split}$$

伺 と く き と く き と

$$T_{1} = 3L^{2} + 2LK_{5} + c_{2}(5)$$

$$T_{2} = \frac{T_{1}(-7+T_{1})-6c_{1}(5)^{2}-25LK-21L^{2}}{2}$$

$$T_{3} = (2T_{2}(-14+3L^{2}+2LK+c_{2}(5))+T_{1}(-6c_{1}(5)^{2}-25LK-21L^{2}+40)$$

$$+(-18c_{1}(5)^{2}-117LK+672)L^{2}+(-6c_{1}(5)^{2}-25LK-21L^{2})c_{2}(5)$$

$$-63(L^{2})^{2}-50(LK)^{2}+(-12c_{1}(5)^{2}+950)LK+292c_{1}(5)^{2})/6;$$

$$T_{4} = ...$$

$$T_{5} = ...$$

$$T_{6} = ...$$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ● ●

deg

$$T_{1} = 3L^{2} + 2LK_{5} + c_{2}(5)$$

$$T_{2} = \frac{T_{1}(-7+T_{1})-6c_{1}(5)^{2}-25LK-21L^{2}}{2}$$

$$T_{3} = (2T_{2}(-14+3L^{2}+2LK+c_{2}(5))+T_{1}(-6c_{1}(5)^{2}-25LK-21L^{2}+40)$$

$$+(-18c_{1}(5)^{2}-117LK+672)L^{2}+(-6c_{1}(5)^{2}-25LK-21L^{2})c_{2}(5)$$

$$-63(L^{2})^{2}-50(LK)^{2}+(-12c_{1}(5)^{2}+950)LK+292c_{1}(5)^{2})/6;$$

$$T_{4} = ...$$

$$T_{5} = ...$$

$$T_{6} = ...$$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

deg

$$\begin{array}{rcl} T_{1} = & 3L^{2} + 2LK_{S} + c_{2}(S) & 1 \\ T_{2} = & \frac{T_{1}(-7+T_{1}) - 6c_{1}(S)^{2} - 25LK - 21L^{2}}{2} \\ T_{3} = & (2T_{2}(-14+3L^{2} + 2LK + c_{2}(S)) + T_{1}(-6c_{1}(S)^{2} - 25LK - 21L^{2} + 40) \\ & + (-18c_{1}(S)^{2} - 117LK + 672)L^{2} + (-6c_{1}(S)^{2} - 25LK - 21L^{2})c_{2}(S) \\ & -63(L^{2})^{2} - 50(LK)^{2} + (-12c_{1}(S)^{2} + 950)LK + 292c_{1}(S)^{2})/6; \\ T_{4} = & \dots \\ T_{5} = & \dots \\ T_{6} = & \dots \end{array}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

$$T_{1} = 3L^{2} + 2LK_{5} + c_{2}(5)$$

$$T_{2} = \frac{T_{1}(-7+T_{1})-6c_{1}(5)^{2}-25LK-21L^{2}}{2}$$

$$T_{3} = (2T_{2}(-14+3L^{2}+2LK+c_{2}(5))+T_{1}(-6c_{1}(5)^{2}-25LK-21L^{2}+40)$$

$$+(-18c_{1}(5)^{2}-117LK+672)L^{2}+(-6c_{1}(5)^{2}-25LK-21L^{2})c_{2}(5)$$

$$-63(L^{2})^{2}-50(LK)^{2}+(-12c_{1}(5)^{2}+950)LK+292c_{1}(5)^{2})/6;$$

$$T_{4} = ...$$

$$T_{5} = ...$$

$$T_{6} = ...$$

 $\begin{array}{ll} deg \\ 1 & {}_{L^2,LK,c_2(S)} \\ 2 & {}_{L^2,LK,c_1(S)^2,c_2(S)} \end{array}$

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 →

$$T_{1} = 3L^{2} + 2LK_{5} + c_{2}(5)$$

$$T_{2} = \frac{T_{1}(-7+T_{1})-6c_{1}(5)^{2}-25LK-21L^{2}}{2}$$

$$T_{3} = (2T_{2}(-14+3L^{2}+2LK+c_{2}(5))+T_{1}(-6c_{1}(5)^{2}-25LK-21L^{2}+40)$$

$$+(-18c_{1}(5)^{2}-117LK+672)L^{2}+(-6c_{1}(5)^{2}-25LK-21L^{2})c_{2}(5)$$

$$-63(L^{2})^{2}-50(LK)^{2}+(-12c_{1}(5)^{2}+950)LK+292c_{1}(5)^{2})/6;$$

$$T_{4} = ...$$

$$T_{5} = ...$$

$$T_{6} = ...$$

$$deg \\ 1 \qquad L^{2}, LK, c_{2}(S) \\ 2 \qquad L^{2}, LK, c_{1}(S)^{2}, c_{2}(S)$$

3
$$L^2, LK, c_1(S)^2, c_2(S)$$

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

deg

$$\begin{array}{rcl} T_{1} = & 3L^{2} + 2LK_{S} + c_{2}(S) & 1 & L^{2}, LK, c_{2}(S) \\ T_{2} = & \frac{T_{1}(-7+T_{1}) - 6c_{1}(S)^{2} - 25LK - 21L^{2}}{2} & 2 & L^{2}, LK, c_{1}(S)^{2}, c_{2}(S) \\ T_{3} = & (2T_{2}(-14+3L^{2} + 2LK + c_{2}(S)) + T_{1}(-6c_{1}(S)^{2} - 25LK - 21L^{2} + 40) \\ & +((-18c_{1}(S)^{2} - 117LK + 672)L^{2} + (-6c_{1}(S)^{2} - 25LK - 21L^{2})c_{2}(S) \\ & -63(L^{2})^{2} - 50(LK)^{2} + ((-12c_{1}(S)^{2} + 950)LK + 292c_{1}(S)^{2})/6; \\ T_{4} = & \dots & 4 & L^{2}, LK, c_{1}(S)^{2}, c_{2}(S) \\ T_{5} = & \dots & 5 & L^{2}, LK, c_{1}(S)^{2}, c_{2}(S) \\ T_{6} = & \dots & 6 & L^{2}, LK, c_{1}(S)^{2}, c_{2}(S) \end{array}$$

Same pattern for T_7 and T_8 !

▲□→ ▲ □→ ▲ □→

æ

Theorem (Göttsche's conjecture)

For every integer $r \ge 0$, there exists a universal polynomial $T_r(x, y, z, t)$ of degree r such that

 $T_r(L^2, LK, c_1(S)^2, c_2(S)) = \# of r-nodal curves in |L|$

if L is (5r - 1)-very ample.

Theorem (Göttsche's conjecture)

For every integer $r \ge 0$, there exists a universal polynomial $T_r(x, y, z, t)$ of degree r such that

 $T_r(L^2, LK, c_1(S)^2, c_2(S)) = \# of r-nodal curves in |L|$

if L is (5r - 1)-very ample.

L is called *k*-very ample if for all zero-dimensional closed scheme $\xi \subset S$ of length k + 1, $H^0(S, L) \longrightarrow H^0(L|_{\xi})$ is surjective.

Remarks:

A proof using symplectic geometry was given by A.K. Liu (2000).

回 と く ヨ と く ヨ と

Remarks:

- A proof using symplectic geometry was given by A.K. Liu (2000).
- 2 T_r is universal because it is independent of S and L.
Remarks:

- A proof using symplectic geometry was given by A.K. Liu (2000).
- 2 T_r is universal because it is independent of S and L.
- **③** T_r can be computed by previous results on \mathbb{P}^2 and K3.

Remarks:

- A proof using symplectic geometry was given by A.K. Liu (2000).
- 2 T_r is universal because it is independent of S and L.
- **③** T_r can be computed by previous results on \mathbb{P}^2 and K3.

Question Structure of T_r ?

Remarks:

- A proof using symplectic geometry was given by A.K. Liu (2000).
- 2 T_r is universal because it is independent of S and L.
- **③** T_r can be computed by previous results on \mathbb{P}^2 and K3.

Question Structure of T_r ? Yes!

Theorem

There exist power series A_1 , A_2 , A_3 , A_4 in $\mathbb{Q}[[x]]^{\times}$ such that

$$\sum_{r=0}^{\infty} T_r(L^2, LK, c_1(S)^2, c_2(S)) x^r = A_1^{L^2} A_2^{LK_S} A_3^{c_1(S)^2} A_4^{c_2(S)}.$$

 \longrightarrow the generating function is multiplicative.

・日・ ・ ヨ・ ・ ヨ・

Theorem (Göttsche-Yau-Zaslow formula) There exist two power series B_1 and B_2 in q such that $(DC_1/q)\chi^{(L)}B^{K_2^2}B^{LK_2}$

$$\sum_{r>0} T_r(L^2, LK, c_1(S)^2, c_2(S))(DG_2)^r = \frac{(DG_2/q)^{\chi(C)}B_1^{-5}B_2^{-5}}{(\Delta D^2G_2/q^2)^{\chi(\mathcal{O}_S)/2}}.$$

(4回) (4回) (4回)

Approach: Consider the following diagram

We will prove

- The bottom is an isomorphism by algebraic cobordism.
- 2 ϕ is a homomorphism by degeneration formula
- Solution The theorems will follow from the induced homomorphism Q⁴ to Q[[x]][×].

Introduction: Counting Nodal Curves and Previous Results

- 2 Universal Formulas: Göttsche's Conjecture and Main Theorems
- 3 Algebraic cobordism
- Degeneration formula

・ 同 ト ・ ヨ ト ・ ヨ ト

• The algebraic cobordism theory (of schemes) was first constructed by Levine and Morel (2007).

向下 イヨト イヨト

- The algebraic cobordism theory (of schemes) was first constructed by Levine and Morel (2007).
- Levine and Pandharipande constructed another theory using the double point relation (2009).

伺下 イヨト イヨト

- The algebraic cobordism theory (of schemes) was first constructed by Levine and Morel (2007).
- Levine and Pandharipande constructed another theory using the double point relation (2009).
- Two theories are isomorphic.

向下 イヨト イヨト

- The algebraic cobordism theory (of schemes) was first constructed by Levine and Morel (2007).
- Levine and Pandharipande constructed another theory using the double point relation (2009).
- Two theories are isomorphic.
- We use algebraic cobordism of pairs of surfaces and line bundles to count nodal curves.

・ 戸 ト ・ ヨ ト ・ ヨ ト

- The algebraic cobordism theory (of schemes) was first constructed by Levine and Morel (2007).
- Levine and Pandharipande constructed another theory using the double point relation (2009).
- Two theories are isomorphic.
- We use algebraic cobordism of pairs of surfaces and line bundles to count nodal curves.
- Lee and Pandharipande generalize it to pairs of schemes and vector bundles of arbitrary dimension and rank.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition: Let X_i be smooth projective schemes. We call

$$[X_0] = [X_1] + [X_2] - [X_3]$$

a double point relation if there exist a family X such that

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition: Let X_i be smooth projective schemes. We call

$$[X_0] = [X_1] + [X_2] - [X_3]$$

a double point relation if there exist a family X such that

Definition: Let X_i be smooth projective schemes. We call

$$[X_0] = [X_1] + [X_2] - [X_3]$$

a double point relation if there exist a family X such that

• X_0 is the smooth fiber over 0.

Yu-jong Tzeng Universal Formulas for Counting Nodal Curves on Surfaces

Definition: Let X_i be smooth projective schemes. We call

$$[X_0] = [X_1] + [X_2] - [X_3]$$

a double point relation if there exist a family X such that

- X₀ is the smooth fiber over 0.
- 3 fiber over ∞ has two components X_1 and X_2

Definition: Let X_i be smooth projective schemes. We call

$$[X_0] = [X_1] + [X_2] - [X_3]$$

a double point relation if there exist a family X such that

- X_0 is the smooth fiber over 0.
- (2) fiber over ∞ has two components X_1 and X_2
- X₁ and X₂ intersect transversally along a smooth divisor D

Definition: Let X_i be smooth projective schemes. We call

$$[X_0] = [X_1] + [X_2] - [X_3]$$

a double point relation if there exist a family X such that

- X_0 is the smooth fiber over 0.
- (2) fiber over ∞ has two components X_1 and X_2
- X₁ and X₂ intersect transversally along a smooth divisor D

$$X_3 \cong \mathbb{P}_D(N_{X_1/D} \oplus \mathcal{O}_D)$$

Yu-jong Tzeng

Universal Formulas for Counting Nodal Curves on Surfaces

Definition: Define $\omega_* = \bigoplus_{X \text{ smooth projective}} \mathbb{Q}[X] / \text{ dp relations}$

Theorem (Levine and Pandharipande, 2009)

Every smooth projective scheme can be degenerated to the sum of products of projective spaces with \mathbb{Q} -coefficients by dp relations, i.e.

$$\omega_* \cong \bigoplus_{\lambda = (\lambda_1, \dots, \lambda_r)} \mathbb{Q}[\mathbb{P}^{\lambda_1} \times \dots \times \mathbb{P}^{\lambda_r}]$$

Definition: Define $\omega_* = \bigoplus_{X \text{ smooth projective}} \mathbb{Q}[X] / \text{ dp relations}$

Theorem (Levine and Pandharipande, 2009)

Every smooth projective scheme can be degenerated to the sum of products of projective spaces with \mathbb{Q} -coefficients by dp relations, i.e.

$$\omega_* \cong \bigoplus_{\lambda = (\lambda_1, \dots, \lambda_r)} \mathbb{Q}[\mathbb{P}^{\lambda_1} \times \dots \times \mathbb{P}^{\lambda_r}]$$

Corollary: For every smooth projective surface *S*,

$$[S] = *[\mathbb{P}^2] + *[\mathbb{P}^1 \times \mathbb{P}^1].$$

Extended double point relation

Definition: Let X_i be smooth projective surfaces and L_i be line bundles on X_i . We call

$$[X_0, L_0] = [X_1, L_1] + [X_2, L_2] - [X_3, L_3]$$

an extended double point relation if there exist a family X and line bundle L on X such that

Definition

Define the algebraic cobordism group $\omega_{2,1}$ to be the Q-vector space spanned by all pairs (of smooth projective surfaces and line bundles) modulo extended double point relations.

・回・ ・ヨ・ ・ヨ・

Definition

Define the algebraic cobordism group $\omega_{2,1}$ to be the Q-vector space spanned by all pairs (of smooth projective surfaces and line bundles) modulo extended double point relations.

Theorem

$$\omega_{2,1} \xrightarrow{(L^2, LK, c_1(S)^2, c_2(S))} \mathbb{Q}^4$$

is an isomorphism.

- 4 回 ト - 4 回 ト - 4 回 ト

Definition

Define the algebraic cobordism group $\omega_{2,1}$ to be the Q-vector space spanned by all pairs (of smooth projective surfaces and line bundles) modulo extended double point relations.

Theorem

$$\omega_{2,1} \xrightarrow{(L^2, LK, c_1(S)^2, c_2(S))} \mathbb{Q}^4$$

is an isomorphism.

It is also easy to find bases of $\omega_{2,1}$, for example

 $\{[\mathbb{P}^2,\mathcal{O}],[\mathbb{P}^2,\mathcal{O}(1)],[\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O}],[\mathbb{P}^1\times\mathbb{P}^1,\mathcal{O}(1,0)]\}\text{ and }$

 $\{[\mathbb{P}^2, \mathcal{O}], [\mathbb{P}^2, \mathcal{O}(1)], [\mathsf{K3}, L_1], [\mathsf{K3}, L_2]\}, L_1^2 \neq L_2^2$

are two bases.

・ 同 ト ・ ヨ ト ・ ヨ ト

< ∃⇒

conclusion We have the isomorphism on the bottom of the diagram.

Introduction: Counting Nodal Curves and Previous Results

- 2 Universal Formulas: Göttsche's Conjecture and Main Theorems
- 3 Algebraic cobordism
- Degeneration formula

→ 同 → → 目 → → 目 →

Introduction	Universal Formulas	Algebraic cobordism	Degeneration formula
ldea			

Goal: Use degeneration of pairs to study the number of nodal curves.

.⊒ .⊳

ldea	

Goal: Use degeneration of pairs to study the number of nodal curves.

Problem: After degeneration, ample line bundles may not be ample anymore. In that case number of nodal curves does not have good properties.

Introduction	Universal Formulas	Algebraic cobordism	Degeneration formula
ldea			

Goal: Use degeneration of pairs to study the number of nodal curves.

Problem: After degeneration, ample line bundles may not be ample anymore. In that case number of nodal curves does not have good properties.

Solution: Study the enumerative number $d_r(S, L)$ (suggested by Göttsche).

 $L^{[n]}$

 $Z_n \xrightarrow{q_n} S^{[n]}$

Definition of $d_r(S, L)$

Definition: Suppose L is a line bundle on S. Let

- *S*^[*n*] be the Hilbert scheme of *n* points on *S*.
- $Z_n \subset S \times S^{[n]}$ be the universal closed subscheme.
- Then we define $L^{[n]} := (q_n)_*(p_n)^*L$.

Fact: $L^{[n]}$ is a vector bundle of rank n on $S^{[n]}$.

 $L - - > \overset{\vee}{S}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition: Let W^{3r} be the closure of

$$\left\{ \prod_{i=1}^{r} \operatorname{Spec}(\mathcal{O}_{\mathcal{S},x_{i}}/m_{\mathcal{S},x_{i}}^{2}) \,|\, x_{i} \text{ are distinct points in } \mathcal{S} \right\} \subset \mathcal{S}^{[3r]}.$$

Define

$$d_r(S,L) = \int_{W^{3r}} c_{2r}(L_{3r}).$$

Proposition (Göttsche)

 $d_r(S, L)$ equals the number of r-nodal curves in [S, L] if L is (5r - 1)-very ample.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Why is $d_r(S, L) = \int_{W^{3r}} c_{2r}(L_{3r})$ related to the number of *r*-nodal curves?

• A section $s \in |L| \implies$ a section $s^{[n]} \in |L^{[n]}|$.

Why is $d_r(S, L) = \int_{W^{3r}} c_{2r}(L_{3r})$ related to the number of *r*-nodal curves?

• A section $s \in |L| \implies$ a section $s^{[n]} \in |L^{[n]}|$.

 If C := (s = 0) contains Spec(O_{S,x}/m²_{S,x}), then C has multiplicity two at x. Generically it is a node.

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

Why is $d_r(S, L) = \int_{W^{3r}} c_{2r}(L_{3r})$ related to the number of *r*-nodal curves?

- A section $s \in |L| \Longrightarrow$ a section $s^{[n]} \in |L^{[n]}|$.
- If C := (s = 0) contains Spec(O_{S,x}/m²_{S,x}), then C has multiplicity two at x. Generically it is a node.

•
$$W^{3r}$$
 =the closure of

$$\left\{ \prod_{i=1}^{r} \operatorname{Spec}(\mathcal{O}_{S,x_{i}}/m_{S,x_{i}}^{2}) \,|\, x_{i} \text{ are distinct points in } S \right\}$$

 \longrightarrow the condition of *r* nodes

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

The advantage of using $d_r(S, L)$:

(4回) (4回) (4回)

æ

The advantage of using $d_r(S, L)$:

• it can be defined for all line bundles

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ
The advantage of using $d_r(S, L)$:

- it can be defined for all line bundles
- behaves well in flat families

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

The advantage of using $d_r(S, L)$:

- it can be defined for all line bundles
- behaves well in flat families

So we hope to derive a formula about d_r in an extended double relation

$$[X_0, L_0] = [X_1, L_1] + [X_2, L_2] - [X_3, L_3].$$

向下 イヨト イヨト

Key tool	
J. Li and B. schemes":	Wu's construction of "the moduli stack of Hilbert

Algebraic cobordism

Degeneration formula

Universal Formulas

Introduction

・ロト・(四ト・(川下・(日下・(日下)

Introduction	Universal Formulas	Algebraic codordism	Degeneration formula
Key tool J. Li and B. schemes":	Wu's constru	ction of "the moduli stacl	k of Hilbert
	[X ₁ , L ₁]	$ \begin{array}{c} L\\ X\\ X\\ I\\ P^{1} \end{array} $	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Universal Formulas	Algebra	aic cobordism	Dege	neration formula
Key tool					
J. Li and B. schemes":	Wu's constru	uction of "th	ie moduli	stack of H	ilbert
[X ₀ , L ₀]	[X ₁ , L ₁]	Cor L	responding family	of Hilbert schemes	of n points L ^[n]
г		×			
	• [X ₃ , L ₃]	π \longrightarrow π	X ₀ ^[n]	$(X_1/D)^{[n-k]}$ x(X ₂ /D) ^[n-k]	
	[X ₂ , L ₂]			-	$\int_{1}^{n} e^{-1}$
0	÷ ∞	۲'	0	8	L.
			< □ > <		▶ 目 の Q

Yu-jong Tzeng Universal Formulas for Counting Nodal Curves on Surfaces

Theorem

If $[X_0, L_0] = [X_1, L_1] + [X_2, L_2] - [X_3, L_3]$ is an extended double point relation, then

$$\phi(X_0, L_0) = \frac{\phi(X_1, L_1)\phi(X_2, L_2)}{\phi(X_3, L_3)}$$

i.e. ϕ induced a homomorphism from $\omega_{2,1}$ to $(\mathbb{Q}[[x]]^{\times}, \cdot)$.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

-

Now we are ready to prove theorems.

Let $\{e_i\}$ be the Standard basis of \mathbb{Q}^4 and $\{A_i(x)\}$ be their images.

Let $\{e_i\}$ be the Standard basis of \mathbb{Q}^4 and $\{A_i(x)\}$ be their images. The commutative diagram implies

$$\phi(S,L)(x) = A_1(x)^{L^2} A_2(x)^{LK_5} A_3(x)^{c_1(S)^2} A_4(x)^{c_2(S)}.$$

Let $\{e_i\}$ be the Standard basis of \mathbb{Q}^4 and $\{A_i(x)\}$ be their images. The commutative diagram implies

$$\phi(S,L)(x) = A_1(x)^{L^2} A_2(x)^{LK_5} A_3(x)^{c_1(S)^2} A_4(x)^{c_2(S)}.$$

 \longrightarrow $d_r(S, L)$ is ALWAYS a degree r polynomial in L^2 , LK, $c_1(S)^2$ and $c_2(S)$.

d_r(S, L) is ALWAYS a degree r polynomial in L², LK, c₁(S)² and c₂(S).

▲圖▶ ▲屋▶ ▲屋▶ ---

2

- d_r(S, L) is ALWAYS a degree r polynomial in L², LK, c₁(S)² and c₂(S).
- + **Recall**: $d_r(S, L)$ equals the number of *r*-nodal curves when *L* is (5r 1)-very ample.

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

- d_r(S, L) is ALWAYS a degree r polynomial in L², LK, c₁(S)² and c₂(S).
- + **Recall**: $d_r(S, L)$ equals the number of *r*-nodal curves when *L* is (5r 1)-very ample.
- \longrightarrow $d_r(S, L)$ is the universal polynomial we are looking for!!!

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

- $d_r(S, L)$ is ALWAYS a degree r polynomial in L^2 , LK, $c_1(S)^2$ and $c_2(S)$.
- + **Recall**: $d_r(S, L)$ equals the number of *r*-nodal curves when *L* is (5r 1)-very ample.
- \longrightarrow $d_r(S, L)$ is the universal polynomial we are looking for!!! This proves

Theorem (Göttsche's conjecture)

For every integer $r \ge 0$, there exists a universal polynomial $T_r(x, y, z, t)$ of degree r such that

$$T_r(L^2, LK, c_1(S)^2, c_2(S)) = \# of r-nodal curves in |L|$$

if L is (5r - 1)-very ample.

- 4 回 2 - 4 □ 2 - 4 □

э

Now we have $T_r(L^2, LK, c_1(S)^2, c_2(S)) = d_r(S, L)$ and recall

$$\phi(S,L) = A_1^{L^2} A_2^{LK_S} A_3^{c_1(S)^2} A_4^{c_2(S)}.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

æ

Now we have $T_r(L^2, LK, c_1(S)^2, c_2(S)) = d_r(S, L)$ and recall

$$\phi(S,L) = A_1^{L^2} A_2^{LK_S} A_3^{c_1(S)^2} A_4^{c_2(S)}.$$

Theorem

There exist power series A_1 , A_2 , A_3 , A_4 in $\mathbb{Q}[[x]]^{\times}$ such that

$$\sum_{r=0}^{\infty} T_r(L^2, LK, c_1(S)^2, c_2(S)) x^r = A_1^{L^2} A_2^{LK_S} A_3^{c_1(S)^2} A_4^{c_2(S)}.$$

 ∞

(Because both sides are equal to
$$\sum_{r=0}^{\infty} d_r(S,L) x^r = \phi(S,L)$$
)

・ 回 と ・ ヨ と ・ モ と …

There exist two power series B_1 and B_2 in q such that

$$\sum_{r\geq 0} T_r(L^2, LK, c_1(S)^2, c_2(S))(DG_2)^r = \frac{(DG_2/q)^{\chi(L)}B_1^{K_2^c}B_2^{LK_S}}{(\Delta D^2G_2/q^2)^{\chi(\mathcal{O}_S)/2}}.$$

Proof:

 $LHS = \phi(S, L)(DG_2)$

向下 イヨト イヨト

There exist two power series B_1 and B_2 in q such that

$$\sum_{r\geq 0} T_r(L^2, LK, c_1(S)^2, c_2(S))(DG_2)^r = \frac{(DG_2/q)^{\chi(L)}B_1^{K_2^c}B_2^{LK_S}}{(\Delta D^2G_2/q^2)^{\chi(\mathcal{O}_S)/2}}.$$

Proof:

- $LHS = \phi(S, L)(DG_2)$
- **2** ϕ is a homomorphism from $\omega_{2,1}$ to $\mathbb{Q}[[x]]^{\times}$.

・同・ ・ヨ・ ・ヨ・

There exist two power series B_1 and B_2 in q such that

$$\sum_{r\geq 0} T_r(L^2, LK, c_1(S)^2, c_2(S))(DG_2)^r = \frac{(DG_2/q)^{\chi(L)}B_1^{K_2^r}B_2^{LK_S}}{(\Delta D^2G_2/q^2)^{\chi(\mathcal{O}_S)/2}}.$$

Proof:

- **LHS** $= \phi(S, L)(DG_2)$
- **2** ϕ is a homomorphism from $\omega_{2,1}$ to $\mathbb{Q}[[x]]^{\times}$.
- ◎ {[\mathbb{P}^2 , \mathcal{O}], [\mathbb{P}^2 , \mathcal{O} (1)], [K3, L_1], [K3, L_2]} is a basis if $L_1^2 \neq L_2^2$.

▲圖▶ ▲屋▶ ▲屋▶ --

There exist two power series B_1 and B_2 in q such that

$$\sum_{r\geq 0} T_r(L^2, LK, c_1(S)^2, c_2(S))(DG_2)^r = \frac{(DG_2/q)^{\chi(L)}B_1^{K_2^2}B_2^{LK_S}}{(\Delta D^2G_2/q^2)^{\chi(\mathcal{O}_S)/2}}.$$

Proof:

- **LHS** $= \phi(S, L)(DG_2)$
- **2** ϕ is a homomorphism from $\omega_{2,1}$ to $\mathbb{Q}[[x]]^{\times}$.
- {[\mathbb{P}^2 , \mathcal{O}], [\mathbb{P}^2 , \mathcal{O} (1)], [K3, L_1], [K3, L_2]} is a basis if $L_1^2 \neq L_2^2$.
- Bryan-Leung found the LHS function on K3 and primitive line bundles.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you!!

Yu-jong Tzeng Universal Formulas for Counting Nodal Curves on Surfaces

Ξ.