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Rabin scheme and roots of polynomials

In 1979, Michael Rabin suggested a variant of RSA with
public-key exponent 2, which he showed to be as secure as
factoring.

Let N = pq be a product of two prime numbers.

Encryption of a message m ∈ Z∗
N is

C = m2 mod N

Decryption is performed by solving the equation

x2 = C mod N , (1)

which has four roots in Z∗
N .
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Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known
To solve equation (1) is ”hard” if the factors of N are not
known
To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?
The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known
To solve equation (1) is ”hard” if the factors of N are not
known
To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?
The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known

To solve equation (1) is ”hard” if the factors of N are not
known
To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?
The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known
To solve equation (1) is ”hard” if the factors of N are not
known

To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?
The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known
To solve equation (1) is ”hard” if the factors of N are not
known
To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?
The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known
To solve equation (1) is ”hard” if the factors of N are not
known
To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?
The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known
To solve equation (1) is ”hard” if the factors of N are not
known
To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?

The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Rabin scheme and roots of polynomials

Key points

To solve equation (1) is ”easy” if the factors of N are known
To solve equation (1) is ”hard” if the factors of N are not
known
To solve the equation x2 − C = 0 mod N is equivalent
to factor N

Key issue (at the decryption stage)

Once the four roots x1, x2, x3, x4 of equation (1) are known,
how do we identify the original message?
The further information should be computed from m
without knowing the factors of N (or any information
leading to easy factorization)



The Rabin scheme revisited

Preliminaries: Chinese Remainder Theorem (CRT)

Every element a of ZN is uniquely identified by its
remainders ap and aq with respect to p and q.

a is reconstructed by the CRT as

a = apψ1 + aqψ2 mod N

ψ1 and ψ2, obtained from the extended Euclidean
algorithm, are defined by{

ψ1 = 1 mod p, ψ1 = 0 mod q
ψ2 = 0 mod p, ψ2 = 1 mod q,

and satisfy 
ψ1ψ2 = 0 mod N
ψ2
1 = ψ1 mod N
ψ2
2 = ψ2 mod N .
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Preliminaries: Roots in ZN

The equation X2 − C = 0 is solvable modN if and only if
it is solvable modp and modq.

Let u1 be a root modp, the second root is −u1
Let v1 be a root modq, the second root is −v1
The four roots can be written as

x1 = u1ψ1 + v1ψ2 modN
x2 = u1ψ1 + (q − v1)ψ2 modN
x3 = (p− u1)ψ1 + v1ψ2 modN
x4 = (p− u1)ψ1 + (q − v1)ψ2 modN .

(2)

x→ x2 is a 4 to 1 mapping
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Preliminaries

.
Lemma (A)
..

.

. ..

.

.

The four roots x1, x2, x3, x4 of the polynomial x2 − C are
partitioned into two sets R1 = {x1, x4} and R2 = {x2, x3}
such that the roots in the same set have different parity,
i.e. x1 = 1 + x4 mod 2 and x2 = 1 + x3 mod 2.

Assuming that u1 and v1 in equation (2) have the same
parity, the residues modulo p and modulo q of each root in
R1 have the same parity, while the roots in R2 have
residues of different parity.
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Preliminaries: the mapping x → x2

By Lemma (A) each xi is identified by the pair of bits

Bp = (xi mod p) mod 2, and Bq = (xi mod q) mod 2 .

In summary we have the table

root Bp Bq
x1 u1 mod 2 v1 mod 2
x2 u1 mod 2 q − v1 mod 2
x3 p− u1 mod 2 v1 mod 2
x4 p− u1 mod 2 p− v1 mod 2
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Preliminaries: the mapping x → x2

For example if u1 = v1 = 0 mod 2 and suppose x1 and x2 even,
we have

root Bp Bq Bp +Bq mod 2 xi mod 2

x1 0 0 0 0
x2 0 1 1 0
x3 1 0 1 1
x4 1 1 0 1

A root xi is identified by the pair of bits

b0 = xi mod 2
b1 = [xi mod p] + [xi mod q] mod 2
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Preliminaries: the mapping x → x2

Roots of unity

x2 = 1 mod N has roots

1 , − 1 , ψ1 − ψ2 , − ψ1 + ψ2

If a root m of x2 − C = 0 mod N is known the four roots
are
m, −m, m(ψ1 − ψ2) mod N , and m(−ψ1 + ψ2) mod N

If we know the factors of N , we may compute the roots of
unity

If we are able to compute the roots of unity, then we may
factor N
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Preliminaries: Legendre and Jacobi symbols

1) Legendre symbol is defined for every odd prime p as(
a

p

)
=

{
1 if x2 = a mod p is solvable in Zp
−1 if x2 = a mod p is not solvable in Zp

2) Jacobi symbol is defined for every pair r, s of positive odd
integers as (

a

rs

)
=

(
a

r

)(
a

s

)
3)

(
aψ1 + bψ2

pq

)
=

(
a

p

)(
b

q

)
4) If p and q are congruent to 3 modulo 4 the roots x1 and x2

of equation (1) have opposite Jacobi symbol(
x1
p

)
= −

(
x2
q

)
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Preliminaries: Legendre and Jacobi symbols

5)

(
a+ µz

z

)
=

(
a

z

)
6) Reciprocity law(

a

b

)
=

(
b

a

)
(−1)

(a−1)(b−1)
4

(
2

b

)
= (−1)

b2−1
8

...1 The properties 5) and 6) allow us to compute Legendre and
Jacobi symbols by a method that mimics the Euclidean
algorithm and has the same efficiency.
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Preliminaries: Dedekind sums

.
Definition
..

.

. ..

.

.

Let h, k be relatively prime and k ≥ 1, a Dedekind sum is
denoted by s(h, k) and defined as

s(h, k) =

k∑
j=1

((
hj

k

))((
j

k

))
(3)

where the symbol ((x)), defined as

((x)) =

{
x− ⌊x⌋ − 1

2 if x is not an integer
0 if x is an integer ,

(4)

denotes the well-known sawtooth function of period 1.
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Preliminaries: Dedekind sums

.
Sawtooth function
..

.

. ..

.

.
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Preliminaries: Dedekind sums

Properties

1) h1 = h2 mod k ⇒ s(h1, k) = s(h2, k)

2) s(−h, k) = −s(h, k)
3) s(h, k) + s(k, h) = −1

4 +
1
12

(
h
k + 1

hk + k
h

)
, a property known

as the reciprocity law for the Dedekind sums.

4) 12ks(h, k) = k + 1− 2

(
h

k

)
mod 8 for k odd, a property

connecting Dedekind sums and Jacobi symbols.

The properties 1), 2), and 3) allow us to compute a Dedekind
sum by a method that mimics the Euclidean algorithm and has
the same efficiency.
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Preliminaries: Dedekind sums

.
Lemma (B)
..

.

. ..

.

.

If k = 1 mod 4, then, for any h relatively prime with k, the
denominator of s(h, k) is odd.

Proof outline: using properties of the Dedekind sums we have

s(h, k) =

k−1∑
j=1

j

k

(
hj

k
−

⌊
hj

k

⌋
− 1

2

)
,

the summation can be split into two summations such that

- the first summation has the denominator patently odd;

- the second summation, evaluated as −1

2

k−1∑
j=1

j

k
= −k − 1

4
is

an integer by hypothesis
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Preliminaries: Dedekind sums

.
Lemma (C)
..

.

. ..

.

.

If k is a product of two Blum primes, x1 is relatively prime with
k, and x2 = x1(ψ1 − ψ2), then s(x1, k) + s(x2, k) = 1 mod 2.

Proof outline: by property 4) of the Dedekind sums we have

12Ns(z1, N) = N + 1− 2

(
z1
N

)
mod 8 i = 1, 2

thus, summing member by member the expressions for i = 1
and 2, and taking into account that N = 1 mod 4 we have

12N [s(z1, N)+s(z2, N))] = 2N+2−2

[(
z1
N

)
+

(
z2
N

)]
mod 8 ,

since 12N = 4 mod 8, 2N = 2 mod 8; and the sum of the two
Jacobi symbols is 0. The conclusion follows from the
application of Lemma (B).
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Williams’ scheme

In 1980, Williams proposed an implementation of Rabin
scheme using a parity bit and the Jacobi symbol for
identifying the message.

The decryption process is based on the observation that,
setting D = 1

2(
(p−1)(q−1)

4 + 1), if b = a2 mod N and(
a

N

)
= 1, we have a = ±bD.
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Williams’ scheme

Public-key

- [N,S], where S is an integer such that

(
S

N

)
= −1.

Encryption

- m the message

- [C, c1, c2] the encrypted message, where

c1 =
1

2

[
1−

(
m

N

)]
, m̄ = Sc1m mod N ,

c2 = m̄ mod 2 , C = m̄2 mod N .

Decryption

compute m′ = CD mod N and N −m′,

choose the number, m′′ say, with the parity specified by c2.

The original message is recovered as

m = S−c1m′′ .
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A second scheme

Public-key

- [N ]

Encryption

- m the message

- [C, b0, b1] the encrypted message, where

C = m2 mod N , b0 = m mod 2 , b1 =
1

2

[
1 +

(
m

N

)]
.

Decryption

compute the four roots, written as positive numbers;

take the two roots having the same parity specified by b0,
say z1 and z2,

compute the numbers 1
2

[
1 +

(
z1
N

)]
, 1

2

[
1 +

(
z2
N

)]
The original message is the root corresponding to the
number equal to b1.
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A scheme based on Dedekind sums

Public-key

[N ]

Encryption

m the message
[C, b0, b1] the encrypted message, where

C = m2 mod N , b0 = m mod 2 , b1 = s(m,N) mod 2 ,

The Dedekind sum can be taken modulo 2 since the denominator

is odd. (Lemma (B))

Decryption

compute the four roots, written as positive numbers;
take the two roots having the same parity specified by b0,
say z1 and z2,
compute the numbers s(z1, N) mod 2 , s(z2, N) mod 2
The original message is the root corresponding to the
number equal to b1 (Lemma (C)).
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Root identification for any pair of primes

If p and q are not both Blum primes, the identification of
m among the four roots of the polynomial x2 − C can be
given, as a consequence of Lemma (A), by the pair [b0, b1]
where

b0 = xi mod 2 and b1 = (xi mod p)+(xi mod q) mod 2 .

The bit b0 can be computed at the encryption stage
without knowing p and q.

The bit b1 requires, in this definition, the knowledge of p
and q and cannot be directly computed knowing only N .
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List

In principle, a way to get b1 is to publish a pre-computed
binary list (or table) that has in position i the bit b1
pertaining to the message m = i.

This list does not disclose any useful information on the
factorization of N , because, even if we know that the
residues modulo p and modulo q have the same parity, we
do not know which parity, and if these residues have
different parity we do not know which parity of which
residue.

The list makes the task theoretically feasible, although its
size is of exponential complexity with respect to N and
thus practically unrealizable.
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Residuacity

The Jacobi symbol, i.e. the quadratic residuacity, was used
to distinguish the roots in the Rabin cryptosystem, when
p = q = 3 mod 4.

For primes congruent 1 modulo 4, Legendre symbols cannot
distinguish numbers of opposite sign, therefore quadratic
residuacity is not sufficient anymore to identify the roots.

Higher power residue symbols could in principle do the
desired job, but unfortunately their use unveils the
factorization of N .
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Polynomial function

We may construct an identifying polynomial as an
interpolation polynomial choosing a prime P > N .

The polynomial

L(x) =

N−1∑
j=1

(
1− (x− j)P−1

)
((j mod p) + (j mod q) mod 2)

assumes the value 1 in 0 < m < N , if the residues of m
modulo p and modulo q have different parity, and assumes
the value 0 elsewhere.

Unfortunately, the complexity of L(x) is prohibitive and
makes this function practically useless.
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Group isomorphism

A possible solution is to use a function d from ZN into a
finite group G.

Define a function d1 such that d1(x1) = d(x2).

The public key consists of the two functions d and d1.

At the encryption stage both are evaluated (i.e. d(m) and
d1(m)) and the minimum information necessary to
distinguish their values is delivered together with the
encrypted message. The decryption operations are obvious.

The true limitation of this scheme is that d must be a
one-way function, otherwise two square roots that allow us
to factor N can be recovered as in the previous methods.
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Group isomorphism

The following solution is based on the hardness of computing
discrete logarithms.

Given N , let P = µN + 1 be a prime (the smallest prime),
that certainly exists by Dirichlet’s theorem, that is
congruent 1 modulo N . Let g be a primitive element
generating the multiplicative group Z∗

P .

Define g1 = gµ and g2 = gµ(ψ1−ψ2), and let m denote the
message, as usual.

The correspondence x↔ gx1 defines an isomorphism
between the additive group of ZN and the cyclic subgroup
of Z∗

P of order N .
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Group isomorphism

Public-key

[N, g1, g2]

Encryption

m the message

[C, b0, d1, d2, p1, p2] the encrypted message, where

C = m2 mod N , b0 = m mod 2 ,
p1 is a position in the binary expansion of gm1 mod P whose
bit d1 is different from the bit in the corresponding position
of the binary expansion of gm2 mod P
p2 is a position in the binary expansion of gm1 mod P whose
bit d2 is different from the bit in the corresponding position
of the binary expansion of g−m

2 mod P .
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Group isomorphism

Decryption

compute the four roots, written as positive numbers;

take the two roots having the same parity specified by b0,
say z1 and z2,

Compute A = gz11 mod P and B = gz21 mod P ,

Select the root that has the correct bits d1 and d2 in both
the given position p1 and p2 of the binary expansion of A
or B.
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A Lemma

.
Lemma (D)
..

.

. ..

.

.

The power g0 = gµ generates a group of order N in Z∗
P ,

thus the correspondence x↔ gx0 establishes an isomorphism
between a multiplicative subgroup of Z∗

P and the additive
group of ZN .
The four roots of x2 = C mod N , C = m2 mod N are in a
one-to-one correspondence with the four powers gm0 mod P ,

g−m0 mod P , g
m(ψ1−ψ2)
0 mod P and g

−m(ψ1−ψ2)
0 mod P .
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Rabin signature

Public-key

The Rabin scheme may also be used to sign a message m:

Let S be any root of x2 = m mod N
The signature is the pair [m,S]
If the quadratic equation is not solvable, i.e. either

f1 =

(
m
p

)
= −1, or f2 =

(
m
q

)
= −1, or both f1 and

f2 are −1, a random padding factor U is used until
x2 = mU mod N can be solved,
The signature is the triple [m,U, S]

A different scheme is the Rabin-Williams signature.

We propose a Rabin signature that makes use of a deterministic
padding factor.
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Rabin signature

Public-key

[N ]

Signed message

[U,m, S], where

U = R2 (f1ψ1 + f2ψ2) mod N is the padding factor, with

R a random number, and S is any solution of the equation
x2 = mU mod N

Verification

compute mU mod N and S2 mod N ;

the signature is valid if and only if these two numbers are
equal.
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Rabin signature

Rabin signatures with padding factors have several features
...1 the signature can be done using every pair of primes,
therefore it could be used with the modulo of any RSA
public key, for example;

...2 different signatures of the same document are different;

...3 the verification needs only two multiplications, therefore it
is fast enough to be used in authentication protocols.

Deterministic padding is faster than random padding and has
fixed delay.
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Conclusions

1) the root identification requires the delivery of additional
information, which may not be easily computed, especially
when not both primes are Blum primes;

2) many proposed root identification methods, based on the
message semantics, have a naive character and cannot be
used in many circumstances;

3) the delivery of two bits together with the encrypted
message exposes the process to active attacks by
maliciously modifying these bits.
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Conclusions

The Rabin scheme may come with some hindrance when
used to conceal a message,

The Rabin scheme seems effective when applied to generate
electronic signature or as a hash function.
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Thank you for your attention!
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