On the weights of affine-variety codes and some Hermitian codes

Marco Pellegrini
University of Pisa, Italy
Department of Mathematics

Trento, 12 settembre 2011

Summary

1. Introduction
2. Hermitian codes
3. Edge and corner code
4. Minimum weight words
5. The second weight
6. Work in progress

Introduction

For any affine-variety code we show that we can construct an ideal whose solutions correspond to codewords with any assigned weight. We use our ideal and a geometric characterization to determine the number of small-weight codewords for some families of Hermitian codes over any $\mathbb{F}_{q^{2}}$. In particular, we determine the number of minimum-weight codewords for all Hermitian codes with $d \leq q$. For such codes we also count some other small-weight codewords.

Acknowledgements

This work is jointly with Chiara Marcolla and our supervisor Massimiliano Sala.

Hermitian curve

We consider the Hermitian curve \mathcal{H} over $\mathbb{F}_{q^{2}}$

$$
x^{q+1}=y^{q}+y
$$

The norm is a function $N: \mathbb{F}_{q^{r}} \rightarrow \mathbb{F}_{q}$ such that

$$
N(x)=x^{1+q+\cdots+q^{r-1}}
$$

The trace is a function $\operatorname{Tr}: \mathbb{F}_{q^{r}} \rightarrow \mathbb{F}_{q}$ such that

$$
\operatorname{Tr}(x)=x+x^{q}+\cdots+x^{q^{r-1}}
$$

Hermitian curve

The Hermitian curve can be described as

$$
N(x)=\operatorname{Tr}(y), \quad \text { with } r=2
$$

This curve has exactly $n=q^{3}$ rational points, that we call $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$.

Hermitian code

Definition

The evaluation map is

$$
\begin{gathered}
e v_{\mathcal{P}}: \mathbb{F}_{q^{2}}[x, y] /\left\langle x^{q+1}-y^{q}-y\right\rangle \rightarrow\left(\mathbb{F}_{q^{2}}\right)^{n} \\
e v_{\mathcal{P}}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{gathered}
$$

Let m a natural number, then we define

$$
\mathcal{B}_{q, m}=\left\{x^{r} y^{s} \mid q r+(q+1) s \leq m, 0 \leq s \leq q-1\right\}
$$

So we consider

$$
E_{m}=\left\langle e v_{\mathcal{P}}(f) \mid f \in \mathcal{B}_{q, m}\right\rangle
$$

Hermitian code

Therefore

$$
C_{m}=\left(E_{m}\right)^{\perp}=\left\{c \in\left(\mathbb{F}_{q^{2}}\right)^{n} \mid c \cdot \operatorname{ev}_{\mathcal{P}}(f)=0, f \in \mathcal{B}_{q, m}\right\}
$$

$\mathcal{C}_{q, m}=C_{m}$ is called Hermitian code. The parity-check matrix H of $\mathcal{C}_{q, m}$ is

$$
H=\left(\begin{array}{ccc}
f_{1}\left(P_{1}\right) & \cdots & f_{1}\left(P_{n}\right) \\
\vdots & \ddots & \vdots \\
f_{i}\left(P_{1}\right) & \cdots & f_{i}\left(P_{n}\right)
\end{array}\right)
$$

where $f_{i} \in \mathcal{B}_{q, m}$.

The number of codewords

Let $\mathcal{C}_{q, m}$ be an Hermitian code. So

$$
z \in \mathcal{C}_{q, m} \Longleftrightarrow H z=0
$$

If we write $\mathcal{B}_{q, m}=\left\{f_{1}, \ldots, f_{n-k}\right\}$, then

$$
\sum_{i=1}^{n} f_{j}\left(P_{i}\right) z_{i}=0 \quad \forall j=1, \ldots, n-k
$$

The number of codewords

All words of weight w correspond to solutions of this system:

$$
J_{q, m, w}=\left\{\begin{array}{l}
\sum_{i=1}^{w} x_{i}^{r} y_{i}^{s} z_{i}=0 \quad \forall x^{r} y^{s} \in \mathcal{B}_{q, m} \\
x_{i}^{q+1}-y_{i}^{q}-y_{i}=0 \quad \forall i=1, \ldots, w \\
x_{i}^{q^{2}}-x_{i}=0 \quad \forall i=1, \ldots, w \\
y_{i}^{q^{2}}-y_{i}=0 \quad \forall i=1, \ldots, w \\
z_{i}^{q^{2}-1}-1=0 \quad \forall i=1, \ldots, w \\
\left(\left(x_{i}-x_{j}\right)^{q^{2}-1}-1\right)\left(\left(y_{i}-y_{j}\right)^{q^{2}-1}-1\right)=0 \quad \forall(i, j) \mid 1 \leq i<j \leq w
\end{array}\right.
$$

The number of codewords of weight w is

$$
A_{w}\left(\mathcal{C}_{q, m}\right)=\frac{\left|\mathcal{V}\left(J_{q, m, w}\right)\right|}{w!}
$$

The four phases of Hermitian codes

Phase	m
1	$0 \leq m \leq q^{2}-q-2$
2	$q^{2}-q \leq m \leq 2 q^{2}-2 q-2$
3	$2 q^{2}-2 q-1 \leq m \leq q^{3}-1$
4	$q^{3} \leq m \leq q^{3}+q^{2}-q-2$

We have studied phase one, i.e. the case $d \leq q$.

Corner code

If H is composed of the evaluation of these sets

$$
\begin{aligned}
L_{0}^{d} & =\left\{1, x, \ldots, x^{d-2}\right\} \\
L_{1}^{d} & =\left\{y, x y, \ldots, x^{d-3} y\right\} \\
& \vdots \\
L_{d-2}^{d} & =\left\{y^{d-2}\right\}
\end{aligned}
$$

Then the code is called a corner code and it is indicated H_{d}^{0}. The dimension of this code is

$$
k=n-\frac{d(d-1)}{2}
$$

Edge code

The code having parity-check matrix composed of $L_{0}^{d} \cup \ldots \cup L_{d-2}^{d}$ and of

$$
\begin{gathered}
I_{1}^{d}=x^{d-1} \\
I_{2}^{d}=x^{d-2} y \\
\vdots \\
I_{j}^{d}=x^{d-j} y^{j-1}
\end{gathered}
$$

is called an edge code, indicated with $\mathrm{H}_{d}^{j}(1 \leq j \leq d-1)$.
The dimension of this code is

$$
k=n-\frac{d(d-1)}{2}-j
$$

Corner code and edge code

- H_{2}^{0} is $[n, n-1,2]$ code. $\mathcal{B}_{q, m}=L_{0}^{2}=\{1\}$
- H_{2}^{1} is $[n, n-2,2]$ code. $\mathcal{B}_{q, m}=L_{0}^{2} \cup l_{1}^{2}=\{1, x\}$
- H_{3}^{0} is $[n, n-3,3]$ code. $\mathcal{B}_{q, m}=L_{0}^{3} \cup L_{1}^{3}=\{1, x, y\}$
- H_{3}^{1} is $[n, n-4,3]$ code. $\mathcal{B}_{q, m}=L_{0}^{3} \cup L_{1}^{3} \cup\left\{l_{1}^{3}\right\}=$ $\left\{1, x, y, x^{2}\right\}$
- H_{3}^{2} is $[n, n-5,3]$ code. $\mathcal{B}_{q, m}=L_{0}^{3} \cup L_{1}^{3} \cup\left\{l_{1}^{3}, l_{2}^{3}\right\}=$ $\left\{1, x, y, x^{2}, x y\right\}$

v-block position

Let $w \geq v \geq 1$. Let
$Q=\left(x_{1}, \ldots, x_{w}, y_{1}, \ldots, y_{w}, z_{1}, \ldots, z_{w}\right) \in \mathcal{V}\left(J_{q, m, w}\right)$, then Q is in v-block position if we can partition $\{1, \ldots, n\}$ in v blocks I_{1}, \ldots, I_{v} such that

$$
x_{i}=x_{j} \Longleftrightarrow \exists h \text { such that } 1 \leq h \leq v \text { and } i, j \in I_{h}
$$

We can assume $\left|I_{1}\right| \leq \ldots \leq\left|I_{v}\right|$ and $I_{1}=\{1, \ldots, u\}$.
Lemma
We always have $u+v \leq w+1$. If $u \geq 2$ and $v \geq 2$, then $v \leq\left\lfloor\frac{w}{2}\right\rfloor$ and $u+v \leq\left\lfloor\frac{w}{2}\right\rfloor+2$.

Edge code

Lemma

Let H_{d}^{j} be an edge code with $1 \leq j \leq d-1$ and
$3 \leq d \leq w \leq 2 d-3$. Let
$Q=\left(x_{1}, \ldots, x_{w}, y_{1}, \ldots, y_{w}, z_{1}, \ldots, z_{w}\right) \in \mathcal{V}\left(J_{q, m, w}\right)$ in v-block position, with $v \leq w$, then either
(a) $u=1$ and $v>d$ and $w \geq d+1$, or
(b) $v=1$, that is, $x_{1}=\cdots=x_{w}$

We have the following corollary:
Corollary
The minimum weight words correspond to points of \mathcal{H} lying on a vertical line.

Sketch of proof (a)

We denote for all h such that $1 \leq h \leq v$

$$
X_{h}=x_{i} \text { if } i \in I_{h}, \quad Z_{h}=\sum_{i \in I_{h}} z_{i}, \quad Y_{h, s}=\sum_{i \in I_{h}} y_{i}^{s} z_{i},
$$

with $1 \leq s \leq u-1$. Let $v \leq d$. We know that $\sum_{i=1}^{w} x_{i}^{r} z_{i}=\sum_{h=1}^{v} X_{h}^{r} Z_{h}$, where $0 \leq r \leq d-1$. We can consider the first v equations

$$
\left(\begin{array}{ccc}
1 & \cdots & 1 \\
X_{1} & \cdots & X_{v} \\
\vdots & \ddots & \vdots \\
X_{1}^{v-1} & \cdots & X_{v}^{v-1}
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
\vdots \\
Z_{v}
\end{array}\right)=0
$$

The solution of the previous system is $Z_{h}=0$ for any h. Since $u=1$, then $Z_{1}=z_{1}=0$, which is impossible. So $v>d$, then $w \geq d+1$.

Sketch of proof (b)

Let $u \geq 2$. Suppose that $v \geq 2$. We know that $\sum_{i=1}^{w} x_{i}^{r} y_{i}^{s} z_{i}=0$ where $x^{r} y^{s} \in \mathcal{B}_{q, m}$. Then a subset is

$$
\left\{\begin{array} { c }
{ \sum _ { i = 1 } ^ { w } x _ { i } ^ { r } z _ { i } = 0 } \\
{ \sum _ { i = 1 } ^ { w } x _ { i } ^ { r } y _ { i } z _ { i } = 0 } \\
{ \vdots } \\
{ \sum _ { i = 1 } ^ { w } x _ { i } ^ { r } y _ { i } ^ { u - 1 } z _ { i } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{c}
\sum_{h=1}^{v} X_{h}^{r} Z_{h}=0 \\
\sum_{h=1}^{v} X_{h}^{r} Y_{h, 1}=0 \\
\vdots \\
\sum_{h=1}^{v} X_{h}^{r} Y_{h, u-1}=0
\end{array}\right.\right.
$$

where $0 \leq r \leq v$. This implies that $Z_{1}=Y_{1,1}=\ldots=Y_{1, u-1}=0$, that is

$$
\left\{\begin{array}{l}
\sum_{i=1}^{u} z_{i}=0 \\
\sum_{i=1}^{u} y_{i} z_{i}=0 \\
\vdots \\
\sum_{i=1}^{u} y_{i}^{u-1} z_{i}=0
\end{array} \Longrightarrow z_{1}=\cdots=z_{u}=0\right.
$$

Edge code

Theorem
The minimum weight words of an edge code H_{d}^{j} are

$$
A_{d}=q^{2}\left(q^{2}-1\right)\binom{q}{d}
$$

We use the previous corollary: the minimum weight words correspond to points of \mathcal{H} lying on a vertical line.

Sketch of proof

For any $x \in \mathbb{F}_{q^{2}}$, the equation $x^{q+1}=y^{q}+y$ has exactly q solutions. We have q^{2} ways to choose $x,\binom{q}{d}$ ways to choose d points of \mathcal{H} on a vertical line. The system $J_{q, m, w}$ becomes

$$
\left\{\begin{array}{c}
\sum_{i=1}^{d} z_{i}=0 \\
\sum_{i=1}^{d} y_{i} z_{i}=0 \\
\vdots \\
\sum_{i=1}^{d} y_{i}^{d-2} z_{i}=0
\end{array}\right.
$$

The solutions in z_{i} are of the form $\left(a_{1} \alpha, \ldots, a_{d} \alpha\right)$, for any $\alpha \in \mathbb{F}_{q^{2}}^{*}$. For this reason, we have $q^{2}-1$ solutions in z_{i}.

Corner code

Proposition

The minimum weight words of a corner code H_{d}^{0} correspond to points lying in the intersection of any line and the curve \mathcal{H}.

Sketch of proof

From system $J_{q, m, w}$ we can deduce

$$
\left\{\begin{array}{c}
\sum_{i=1}^{d} z_{i}=0 \\
\sum_{i=1}^{d} x_{i} z_{i}=0 \\
\vdots \\
\sum_{i=1}^{d} x_{i}^{d-2} z_{i}=0
\end{array}\right.
$$

and we know that the z_{i} are all non-zero if x_{i} are all distinct or all equal. For the same reason, we can also deduce that y_{i} are all distinct or all equal.

Sketch of proof

If the x_{i} are all equal or the y_{i} are all equal, we have finished. Otherwise, we do an affine transformation

$$
\left\{\begin{array}{l}
x=x^{\prime} \\
y=y^{\prime}+a x^{\prime}
\end{array} \quad a \in \mathbb{F}_{q^{2}}\right.
$$

such that at least two y_{i} are equal. Substituting the above transformation into the system $J_{q, m, w}$ and making elementary row operations we get once again the system $J_{q, m, w}$. But, since at least two y_{i} are equal, they are all equal.

Corner code

Theorem
The minimum weight words of a corner code H_{d}^{0} are

$$
A_{d}=q^{2}\left(q^{2}-1\right)\binom{q}{d-1} \frac{q^{3}-d+1}{d}
$$

To prove the theorem we use the previous proposition: the minimum weight words correspond to points lying in the intersection of any line and the curve \mathcal{H}.

Sketch of proof

We have to solve the system

$$
\left\{\begin{array}{l}
x^{q+1}=y^{q}+y \\
y=a x+b
\end{array}\right.
$$

from which we have $a^{q} x^{q}+b^{q}+a x+b=x^{q+1}$. If $b^{q}+b+a^{q+1}=0$, the equation becomes $\left(x-a^{q}\right)^{q+1}=0$, so we have only one point; there are exactly q^{3} such possibilities for (a, b).
If $b^{q}+b+a^{q+1}=c \neq 0$, we have that $c \in \mathbb{F}_{q}$, the equation becomes $\left(x-a^{q}\right)^{q+1}=\left(\alpha^{r}\right)^{q+1}$, where α is a primitive element of $\mathbb{F}_{q^{2}}$ and r is an integer, so that we have exactly $q+1$ solutions. So, we have $\left(q^{4}-q^{3}\right)$ ways to choose a line $y=a x+b,\binom{q+1}{d}$ ways to choose d points on it, $q^{2}-1$ solutions in z_{i}.

Sketch of proof

The number of words corresponding to points on a vertical line is

$$
q^{2}\left(q^{2}-1\right)\binom{q}{d}
$$

whereas those corresponding to non-vertical lines are:

$$
\left(q^{4}-q^{3}\right)\left(q^{2}-1\right)\binom{q+1}{d}
$$

So to find the result of the theorem we have to sum these two values.

The second weight

The problem of finding the number of codewords of weight $d+1$ for a first-phase hermitian code, where d is the distance, is more complicated.
In fact, we can not say in general that such codewords correspond to points on a same line.
Nevertheless, we can count codewords that have this property. By similar arguments, we can state the following theorems.

The case of vertical lines

Theorem (corner code and edge code)
The number of words of weight $d+1$ with $x_{1}=\cdots=x_{d+1}$ of a corner code H_{d}^{0} and of an edge code H_{d}^{j} is:

$$
A_{d+1}=q^{2}\left(q^{4}-(d+1) q^{2}+d\right)\binom{q}{d+1} .
$$

The case of non-vertical lines

Theorem (corner code)
The number of words of weight $d+1$ of a corner code H_{d}^{0} with $\left(x_{i}, y_{i}\right)$ lying on a non-vertical line is:

$$
A_{d+1}=\left(q^{4}-q^{3}\right)\left(q^{4}-(d+1) q^{2}+d\right)\binom{q+1}{d+1}
$$

Theorem (edge code)
The number of words of weight $d+1$ of an edge code H_{d}^{j} with $\left(x_{i}, y_{i}\right)$ lying on a non-vertical line is:

$$
A_{d+1}=\left(q^{4}-q^{3}\right)\left(q^{2}-1\right)\binom{q+1}{d+1}
$$

The case of H_{3}^{0}

To count the number of words with weight $w=4$, we observed that:

- in system $J_{q, m, 4}$ we can have 4 points on a same line;
- we can not have 3 points on a same line and the other outside;
- we can have 4 points in general position, that is, no 3 of them lie on a same line.
So finally we have

$$
\begin{gathered}
A_{4}=\left(\binom{q^{3}}{4}-q^{2}\binom{q}{3}\left(q^{3}-q\right)-\left(q^{4}-q^{3}\right)\binom{q+1}{3}\left(q^{3}-q-1\right)\right)\left(q^{2}-1\right)+ \\
\quad+\left(q^{2}\binom{q}{4}+\left(q^{4}-q^{3}\right)\binom{q+1}{4}\right)\left(q^{4}-4 q^{2}+3\right)
\end{gathered}
$$

The case of H_{3}^{1}

To count the number of words with weight $w=4$, we observed that:

- in system $J_{q, m, 4}$ we can have 4 points on a same line;
- we can not have 3 points on a same line and the other outside;
- we can have 2 points on a vertical line and 2 on another one;
- we can have 4 points on a same parabola of the form $y=a x^{2}+b x+c$.
So finally we have

$$
A_{4}=q^{2}\binom{q}{4}\left(q^{4}-4 q^{2}+3\right)+\frac{q^{4}\left(q^{2}-1\right)^{2}(q-1)^{2}}{8}+\left(q^{2}-1\right) \sum_{k=4}^{2 q} N_{k}\binom{k}{4}
$$

where N_{k} is the number of parabolas that intersect \mathcal{H} in exactly k points.

Other cases

We also studied codes H_{3}^{2} (with $w=4$), H_{4}^{0} and H_{4}^{1} (with $w=5$). In general, we have to study the rank of the matrix

$$
H^{\prime}=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{w} \\
\vdots & \ddots & \vdots \\
x_{1}^{r} y_{1}^{s} & \cdots & x_{w}^{r} y_{w}^{s} \\
\cdots & \cdots & \cdots
\end{array}\right)
$$

for any choice of w points $\left(x_{i}, y_{i}\right)$ of \mathcal{H}.
For these three codes, we have that all codewords of weight $d+1$ correspond to points on a same line (so that we can apply the previous theorems).

Work in progress

- We believe that many of these ideas can be applied to other affine-variety codes.
- We are trying to find the number of parabolas that intersect \mathcal{H} in exactly k points.
- By computer elaborations we see that, if we write the list of A_{d} for every Hermitian code in phase three, ordered by dimension, then that list is symmetric.
- We are trying to see if, for codewords of minimum weight in every phase, they always correspond to points grouped in lines or conics.

