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Introduction

For any affine-variety code we show that we can construct an ideal
whose solutions correspond to codewords with any assigned weight.
We use our ideal and a geometric characterization to determine the
number of small-weight codewords for some families of Hermitian
codes over any Fq2 . In particular, we determine the number of
minimum-weight codewords for all Hermitian codes with d ≤ q.
For such codes we also count some other small-weight codewords.
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Hermitian curve

We consider the Hermitian curve H over Fq2

xq+1 = yq + y

The norm is a function N : Fqr → Fq such that

N(x) = x1+q+···+qr−1

The trace is a function Tr : Fqr → Fq such that

Tr(x) = x + xq + · · · + xqr−1



Hermitian curve

The Hermitian curve can be described as

N(x) = Tr(y), with r = 2

This curve has exactly n = q3 rational points,
that we call P = {P1, . . . ,Pn}.



Hermitian code

Definition
The evaluation map is

evP : Fq2 [x , y ]/〈xq+1 − yq − y〉 → (Fq2)n

evP(f ) = (f (P1), . . . , f (Pn))

Let m a natural number, then we define

Bq,m = {x ry s |qr + (q + 1)s ≤ m, 0 ≤ s ≤ q − 1}

So we consider
Em = 〈evP(f )|f ∈ Bq,m〉



Hermitian code

Therefore

Cm = (Em)⊥ = {c ∈ (Fq2)n|c · evP(f ) = 0, f ∈ Bq,m}

Cq,m = Cm is called Hermitian code. The parity-check matrix H of
Cq,m is

H =







f1(P1) · · · f1(Pn)
...

. . .
...

fi (P1) · · · fi (Pn)







where fi ∈ Bq,m.



The number of codewords

Let Cq,m be an Hermitian code. So

z ∈ Cq,m ⇐⇒ Hz = 0

If we write Bq,m = {f1, . . . , fn−k}, then

n
∑

i=1

fj(Pi )zi = 0 ∀j = 1, . . . , n − k



The number of codewords

All words of weight w correspond to solutions of this system:

Jq,m,w =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Pw

i=1
x r

i y
s
i zi = 0 ∀x ry s ∈ Bq,m

x
q+1
i − y

q

i − yi = 0 ∀i = 1, . . . , w

x
q2

i − xi = 0 ∀i = 1, . . . , w

y
q2

i − yi = 0 ∀i = 1, . . . , w

z
q2

−1
i − 1 = 0 ∀i = 1, . . . , w

((xi − xj)
q2

−1 − 1)((yi − yj)
q2

−1 − 1) = 0 ∀(i , j)|1 ≤ i < j ≤ w

The number of codewords of weight w is

Aw (Cq,m) =
|V(Jq,m,w )|

w !



The four phases of Hermitian codes

Phase m

1 0 ≤ m ≤ q2 − q − 2

2 q2 − q ≤ m ≤ 2q2 − 2q − 2

3 2q2 − 2q − 1 ≤ m ≤ q3 − 1

4 q3 ≤ m ≤ q3 + q2 − q − 2

We have studied phase one, i.e. the case d ≤ q.



Corner code

If H is composed of the evaluation of these sets

Ld
0 = {1, x , . . . , xd−2}

Ld
1 = {y , xy , . . . , xd−3y}

...
Ld

d−2 = {yd−2}

Then the code is called a corner code and it is indicated H0
d .

The dimension of this code is

k = n −
d(d − 1)

2
.



Edge code

The code having parity-check matrix composed of
Ld

0 ∪ . . . ∪ Ld
d−2 and of

ld1 = xd−1

ld2 = xd−2y
...

ldj = xd−jy j−1

is called an edge code, indicated with Hj
d (1 ≤ j ≤ d − 1).

The dimension of this code is

k = n −
d(d − 1)

2
− j .



Corner code and edge code

◮ H0
2 is [n, n − 1, 2] code.

Bq,m = L2
0 = {1}

◮ H1
2 is [n, n − 2, 2] code.

Bq,m = L2
0 ∪ l21 = {1, x}

◮ H0
3 is [n, n − 3, 3] code.

Bq,m = L3
0 ∪ L3

1 = {1, x , y}

◮ H1
3 is [n, n − 4, 3] code.

Bq,m = L3
0 ∪ L3

1 ∪ {l31} =
{1, x , y , x2}

◮ H2
3 is [n, n − 5, 3] code.

Bq,m = L3
0 ∪ L3

1 ∪ {l31 , l32} =
{1, x , y , x2, xy}



v-block position

Let w ≥ v ≥ 1. Let
Q = (x1, . . . , xw , y1, . . . , yw , z1, . . . , zw ) ∈ V(Jq,m,w ), then Q is in
v-block position if we can partition {1, . . . , n} in v blocks I1, . . . , Iv
such that

xi = xj ⇐⇒ ∃h such that 1 ≤ h ≤ v and i , j ∈ Ih

We can assume |I1| ≤ . . . ≤ |Iv | and I1 = {1, . . . , u}.

Lemma
We always have u + v ≤ w + 1. If u ≥ 2 and v ≥ 2, then v ≤ ⌊w

2
⌋

and u + v ≤ ⌊w
2
⌋ + 2.



Edge code

Lemma
Let Hj

d be an edge code with 1 ≤ j ≤ d − 1 and
3 ≤ d ≤ w ≤ 2d − 3. Let
Q = (x1, . . . , xw , y1, . . . , yw , z1, . . . , zw ) ∈ V(Jq,m,w ) in v-block
position, with v ≤ w , then either

(a) u = 1 and v > d and w ≥ d + 1, or

(b) v = 1, that is, x1 = · · · = xw

We have the following corollary:

Corollary

The minimum weight words correspond to points of H lying on a
vertical line.



Sketch of proof (a)

We denote for all h such that 1 ≤ h ≤ v

Xh = xi if i ∈ Ih, Zh =
∑

i∈Ih

zi , Yh,s =
∑

i∈Ih

y s
i zi ,

with 1 ≤ s ≤ u − 1. Let v ≤ d . We know that
∑w

i=1 x r
i zi =

∑v
h=1 X r

hZh, where 0 ≤ r ≤ d − 1. We can consider
the first v equations











1 · · · 1
X1 · · · Xv

...
. . .

...

X v−1
1 · · · X v−1

v

















Z1

...
Zv






= 0

The solution of the previous system is Zh = 0 for any h. Since
u = 1, then Z1 = z1 = 0, which is impossible. So v > d , then
w ≥ d + 1.



Sketch of proof (b)

Let u ≥ 2. Suppose that v ≥ 2. We know that
∑w

i=1 x r
i y s

i zi = 0
where x ry s ∈ Bq,m. Then a subset is



















∑w
i=1 x r

i zi = 0
∑w

i=1 x r
i yizi = 0

...
∑w

i=1 x r
i yu−1

i zi = 0

⇐⇒



















∑v
h=1 X r

hZh = 0
∑v

h=1 X r
hYh,1 = 0

...
∑v

h=1 X r
hYh,u−1 = 0

where 0 ≤ r ≤ v . This implies that Z1 = Y1,1 = . . . = Y1,u−1 = 0,
that is



















∑u
i=1 zi = 0

∑u
i=1 yizi = 0

...
∑u

i=1 yu−1
i zi = 0

=⇒ z1 = · · · = zu = 0.



Edge code

Theorem
The minimum weight words of an edge code Hj

d are

Ad = q2(q2 − 1)

(

q

d

)

We use the previous corollary: the minimum weight words
correspond to points of H lying on a vertical line.



Sketch of proof

For any x ∈ Fq2 , the equation xq+1 = yq + y has exactly q

solutions. We have q2 ways to choose x ,
(

q
d

)

ways to choose d

points of H on a vertical line. The system Jq,m,w becomes



















∑d
i=1 zi = 0

∑d
i=1 yizi = 0

...
∑d

i=1 yd−2
i zi = 0

The solutions in zi are of the form (a1α, . . . , adα), for any
α ∈ F

∗

q2 . For this reason, we have q2 − 1 solutions in zi .



Corner code

Proposition

The minimum weight words of a corner code H0
d correspond to

points lying in the intersection of any line and the curve H.



Sketch of proof

From system Jq,m,w we can deduce



















∑d
i=1 zi = 0

∑d
i=1 xizi = 0

...
∑d

i=1 xd−2
i zi = 0

and we know that the zi are all non-zero if xi are all distinct or all
equal. For the same reason, we can also deduce that yi are all
distinct or all equal.



Sketch of proof

If the xi are all equal or the yi are all equal, we have finished.
Otherwise, we do an affine transformation

{

x = x ′

y = y ′ + ax ′ a ∈ Fq2

such that at least two yi are equal. Substituting the above
transformation into the system Jq,m,w and making elementary row
operations we get once again the system Jq,m,w . But, since at
least two yi are equal, they are all equal.



Corner code

Theorem
The minimum weight words of a corner code H0

d are

Ad = q2(q2 − 1)

(

q

d − 1

)

q3 − d + 1

d

To prove the theorem we use the previous proposition: the
minimum weight words correspond to points lying in the
intersection of any line and the curve H.



Sketch of proof

We have to solve the system

{

xq+1 = yq + y

y = ax + b

from which we have aqxq + bq + ax + b = xq+1. If
bq + b + aq+1 = 0, the equation becomes (x − aq)q+1 = 0, so we
have only one point; there are exactly q3 such possibilities for
(a, b).
If bq + b + aq+1 = c 6= 0, we have that c ∈ Fq, the equation
becomes (x − aq)q+1 = (αr )q+1, where α is a primitive element of
Fq2 and r is an integer, so that we have exactly q + 1 solutions.

So, we have (q4 − q3) ways to choose a line y = ax + b,
(

q+1
d

)

ways to choose d points on it, q2 − 1 solutions in zi .



Sketch of proof

The number of words corresponding to points on a vertical line is

q2(q2 − 1)

(

q

d

)

whereas those corresponding to non-vertical lines are:

(q4 − q3)(q2 − 1)

(

q + 1

d

)

So to find the result of the theorem we have to sum these two
values.



The second weight

The problem of finding the number of codewords of weight d + 1
for a first-phase hermitian code, where d is the distance, is more
complicated.
In fact, we can not say in general that such codewords correspond
to points on a same line.
Nevertheless, we can count codewords that have this property. By
similar arguments, we can state the following theorems.



The case of vertical lines

Theorem (corner code and edge code)

The number of words of weight d + 1 with x1 = · · · = xd+1 of a
corner code H0

d and of an edge code Hj
d is:

Ad+1 = q2(q4 − (d + 1)q2 + d)

(

q

d + 1

)

.



The case of non-vertical lines

Theorem (corner code)

The number of words of weight d + 1 of a corner code H0
d with

(xi , yi ) lying on a non-vertical line is:

Ad+1 = (q4 − q3)(q4 − (d + 1)q2 + d)

(

q + 1

d + 1

)

.

Theorem (edge code)

The number of words of weight d + 1 of an edge code Hj
d with

(xi , yi ) lying on a non-vertical line is:

Ad+1 = (q4 − q3)(q2 − 1)

(

q + 1

d + 1

)

.



The case of H0
3

To count the number of words with weight w = 4, we observed
that:

◮ in system Jq,m,4 we can have 4 points on a same line;

◮ we can not have 3 points on a same line and the other outside;

◮ we can have 4 points in general position, that is, no 3 of them
lie on a same line.

So finally we have

A4 =

((

q3

4

)

− q2

(

q

3

)

(q3 − q) − (q4 − q3)

(

q + 1

3

)

(q3 − q − 1)

)

(q2−1)+

+

(

q2

(

q

4

)

+ (q4 − q3)

(

q + 1

4

))

(q4 − 4q2 + 3)



The case of H1
3

To count the number of words with weight w = 4, we observed
that:

◮ in system Jq,m,4 we can have 4 points on a same line;

◮ we can not have 3 points on a same line and the other outside;

◮ we can have 2 points on a vertical line and 2 on another one;

◮ we can have 4 points on a same parabola of the form
y = ax2 + bx + c .

So finally we have

A4 = q2

(

q

4

)

(q4 − 4q2 + 3) +
q4(q2 − 1)2(q − 1)2

8
+ (q2 − 1)

2q
∑

k=4

Nk

(

k

4

)

where Nk is the number of parabolas that intersect H in exactly k

points.



Other cases

We also studied codes H2
3 (with w = 4), H0

4 and H1
4 (with w = 5).

In general, we have to study the rank of the matrix

H ′ =















1 · · · 1
x1 · · · xw

...
. . .

...
x r
1y s

1 · · · x r
wy s

w

· · · · · · · · ·















for any choice of w points (xi , yi ) of H.
For these three codes, we have that all codewords of weight d + 1
correspond to points on a same line (so that we can apply the
previous theorems).



Work in progress

◮ We believe that many of these ideas can be applied to other
affine-variety codes.

◮ We are trying to find the number of parabolas that intersect
H in exactly k points.

◮ By computer elaborations we see that, if we write the list of
Ad for every Hermitian code in phase three, ordered by
dimension, then that list is symmetric.

◮ We are trying to see if, for codewords of minimum weight in
every phase, they always correspond to points grouped in lines
or conics.


