On the weights of affine-variety codes and some Hermitian codes

Marco Pellegrini

University of Pisa, Italy Department of Mathematics

Trento, 12 settembre 2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

- 1. Introduction
- 2. Hermitian codes
- 3. Edge and corner code
- 4. Minimum weight words

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

- 5. The second weight
- 6. Work in progress

Introduction

For any affine-variety code we show that we can construct an ideal whose solutions correspond to codewords with any assigned weight. We use our ideal and a geometric characterization to determine the number of small-weight codewords for some families of Hermitian codes over any \mathbb{F}_{q^2} . In particular, we determine the number of minimum-weight codewords for all Hermitian codes with $d \leq q$. For such codes we also count some other small-weight codewords.

Acknowledgements

This work is jointly with Chiara Marcolla and our supervisor Massimiliano Sala.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hermitian curve

We consider the Hermitian curve \mathcal{H} over \mathbb{F}_{q^2}

$$x^{q+1} = y^q + y$$

The norm is a function $N : \mathbb{F}_{q^r} \to \mathbb{F}_q$ such that

$$N(x) = x^{1+q+\dots+q^{r-1}}$$

The trace is a function $Tr: \mathbb{F}_{q^r} \to \mathbb{F}_q$ such that

$$Tr(x) = x + x^q + \dots + x^{q^{r-1}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Hermitian curve can be described as

$$N(x) = Tr(y)$$
, with $r = 2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This curve has exactly $n = q^3$ rational points, that we call $\mathcal{P} = \{P_1, \dots, P_n\}$.

Hermitian code

Definition The evaluation map is

$$ev_{\mathcal{P}}: \mathbb{F}_{q^2}[x,y]/\langle x^{q+1}-y^q-y
angle
ightarrow (\mathbb{F}_{q^2})^n$$

 $ev_{\mathcal{P}}(f) = (f(P_1),\ldots,f(P_n))$

Let m a natural number, then we define

$$\mathcal{B}_{q,m} = \{x^r y^s | qr + (q+1)s \le m, 0 \le s \le q-1\}$$

So we consider

$$E_m = \langle ev_{\mathcal{P}}(f) | f \in \mathcal{B}_{q,m} \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hermitian code

Therefore

$$C_m = (E_m)^{\perp} = \{c \in (\mathbb{F}_{q^2})^n | c \cdot ev_{\mathcal{P}}(f) = 0, f \in \mathcal{B}_{q,m}\}$$

 $C_{q,m} = C_m$ is called Hermitian code. The parity-check matrix H of $C_{q,m}$ is

$$H = \begin{pmatrix} f_1(P_1) & \cdots & f_1(P_n) \\ \vdots & \ddots & \vdots \\ f_i(P_1) & \cdots & f_i(P_n) \end{pmatrix}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

where $f_i \in \mathcal{B}_{q,m}$.

The number of codewords

Let $C_{q,m}$ be an Hermitian code. So

$$z \in \mathcal{C}_{q,m} \iff Hz = 0$$

If we write $\mathcal{B}_{q,m} = \{f_1, \ldots, f_{n-k}\}$, then

$$\sum_{i=1}^n f_j(P_i)z_i = 0 \qquad \forall j = 1, \dots, n-k$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The number of codewords

All words of weight w correspond to solutions of this system:

$$J_{q,m,w} = \begin{cases} \sum_{i=1}^{w} x_i^r y_i^s z_i = 0 & \forall x^r y^s \in \mathcal{B}_{q,m} \\ x_i^{q+1} - y_i^q - y_i = 0 & \forall i = 1, \dots, w \\ x_i^{q^2} - x_i = 0 & \forall i = 1, \dots, w \\ y_i^{q^2} - y_i = 0 & \forall i = 1, \dots, w \\ z_i^{q^2-1} - 1 = 0 & \forall i = 1, \dots, w \\ ((x_i - x_j)^{q^2-1} - 1)((y_i - y_j)^{q^2-1} - 1) = 0 & \forall (i,j) | 1 \le i < j \le w \end{cases}$$

The number of codewords of weight w is

$$A_w(\mathcal{C}_{q,m}) = \frac{|\mathcal{V}(J_{q,m,w})|}{w!}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The four phases of Hermitian codes

Phase	т
1	$0 \le m \le q^2 - q - 2$
2	$q^2-q \le m \le 2q^2-2q-2$
3	$2q^2-2q-1 \le m \le q^3-1$
4	$q^3 \le m \le q^3 + q^2 - q - 2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We have studied phase one, i.e. the case $d \leq q$.

Corner code

If H is composed of the evaluation of these sets

$$L_0^d = \{1, x, \dots, x^{d-2}\}$$
$$L_1^d = \{y, xy, \dots, x^{d-3}y\}$$
$$\vdots$$
$$L_{d-2}^d = \{y^{d-2}\}$$

Then the code is called a corner code and it is indicated H_d^0 . The dimension of this code is

$$k=n-\frac{d(d-1)}{2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Edge code

The code having parity-check matrix composed of $L_0^d \cup \ldots \cup L_{d-2}^d$ and of

$$l_1^d = x^{d-1}$$
$$l_2^d = x^{d-2}y$$
$$\vdots$$
$$l_j^d = x^{d-j}y^{j-1}$$

is called an edge code, indicated with H_d^j $(1 \le j \le d - 1)$. The dimension of this code is

$$k=n-\frac{d(d-1)}{2}-j.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Corner code and edge code

- ► H_2^0 is [n, n-1, 2] code. $\mathcal{B}_{q,m} = L_0^2 = \{1\}$
- ► H_2^1 is [n, n-2, 2] code. $\mathcal{B}_{q,m} = L_0^2 \cup l_1^2 = \{1, x\}$
- ► H_3^0 is [n, n-3, 3] code. $\mathcal{B}_{q,m} = L_0^3 \cup L_1^3 = \{1, x, y\}$
- ► H_3^1 is [n, n 4, 3] code. $\mathcal{B}_{q,m} = L_0^3 \cup L_1^3 \cup \{l_1^3\} = \{1, x, y, x^2\}$
- ► H_3^2 is [n, n-5, 3] code. $\mathcal{B}_{q,m} = L_0^3 \cup L_1^3 \cup \{l_1^3, l_2^3\} = \{1, x, y, x^2, xy\}$

-

v-block position

Let $w \ge v \ge 1$. Let $Q = (x_1, \ldots, x_w, y_1, \ldots, y_w, z_1, \ldots, z_w) \in \mathcal{V}(J_{q,m,w})$, then Q is in v-block position if we can partition $\{1, \ldots, n\}$ in v blocks I_1, \ldots, I_v such that

$$x_i = x_j \iff \exists h \text{ such that } 1 \leq h \leq v \text{ and } i, j \in I_h$$

We can assume $|I_1| \leq \ldots \leq |I_v|$ and $I_1 = \{1, \ldots, u\}$.

Lemma

We always have $u + v \le w + 1$. If $u \ge 2$ and $v \ge 2$, then $v \le \lfloor \frac{w}{2} \rfloor$ and $u + v \le \lfloor \frac{w}{2} \rfloor + 2$.

Edge code

Lemma Let H_d^j be an edge code with $1 \le j \le d-1$ and $3 \le d \le w \le 2d-3$. Let $Q = (x_1, \ldots, x_w, y_1, \ldots, y_w, z_1, \ldots, z_w) \in \mathcal{V}(J_{q,m,w})$ in v-block position, with $v \le w$, then either

(a)
$$u = 1$$
 and $v > d$ and $w \ge d + 1$, or
(b) $v = 1$, that is, $x_1 = \cdots = x_w$

We have the following corollary:

Corollary

The minimum weight words correspond to points of ${\mathcal H}$ lying on a vertical line.

Sketch of proof (a)

We denote for all h such that $1 \le h \le v$

$$X_h = x_i \text{ if } i \in I_h, \quad Z_h = \sum_{i \in I_h} z_i, \quad Y_{h,s} = \sum_{i \in I_h} y_i^s z_i,$$

with $1 \le s \le u - 1$. Let $v \le d$. We know that $\sum_{i=1}^{w} x_i^r z_i = \sum_{h=1}^{v} X_h^r Z_h$, where $0 \le r \le d - 1$. We can consider the first v equations

$$\begin{pmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_{\nu} \\ \vdots & \ddots & \vdots \\ X_1^{\nu-1} & \cdots & X_{\nu}^{\nu-1} \end{pmatrix} \begin{pmatrix} Z_1 \\ \vdots \\ Z_{\nu} \end{pmatrix} = 0$$

The solution of the previous system is $Z_h = 0$ for any h. Since u = 1, then $Z_1 = z_1 = 0$, which is impossible. So v > d, then $w \ge d + 1$.

Sketch of proof (b)

Let $u \ge 2$. Suppose that $v \ge 2$. We know that $\sum_{i=1}^{w} x_i^r y_i^s z_i = 0$ where $x^r y^s \in \mathcal{B}_{q,m}$. Then a subset is

$$\begin{cases} \sum_{i=1}^{w} x_i^r z_i = 0\\ \sum_{i=1}^{w} x_i^r y_i z_i = 0\\ \vdots\\ \sum_{i=1}^{w} x_i^r y_i^{u-1} z_i = 0 \end{cases} \iff \begin{cases} \sum_{h=1}^{v} X_h^r Z_h = 0\\ \sum_{h=1}^{v} X_h^r Y_{h,1} = 0\\ \vdots\\ \sum_{h=1}^{v} X_h^r Y_{h,u-1} = 0 \end{cases}$$

where $0 \le r \le v$. This implies that $Z_1 = Y_{1,1} = \ldots = Y_{1,u-1} = 0$, that is

$$\begin{cases} \sum_{i=1}^{u} z_i = 0\\ \sum_{i=1}^{u} y_i z_i = 0\\ \vdots\\ \sum_{i=1}^{u} y_i^{u-1} z_i = 0 \end{cases} \implies z_1 = \dots = z_u = 0.$$

Edge code

Theorem

The minimum weight words of an edge code H_d^j are

$$A_d = q^2(q^2 - 1) \binom{q}{d}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We use the previous corollary: the minimum weight words correspond to points of \mathcal{H} lying on a vertical line.

Sketch of proof

For any $x \in \mathbb{F}_{q^2}$, the equation $x^{q+1} = y^q + y$ has exactly q solutions. We have q^2 ways to choose x, $\binom{q}{d}$ ways to choose d points of \mathcal{H} on a vertical line. The system $J_{q,m,w}$ becomes

$$\begin{cases} \sum_{i=1}^{d} z_i = 0\\ \sum_{i=1}^{d} y_i z_i = 0\\ \vdots\\ \sum_{i=1}^{d} y_i^{d-2} z_i = 0 \end{cases}$$

The solutions in z_i are of the form $(a_1\alpha, \ldots, a_d\alpha)$, for any $\alpha \in \mathbb{F}_{q^2}^*$. For this reason, we have $q^2 - 1$ solutions in z_i .

Corner code

Proposition

The minimum weight words of a corner code H^0_d correspond to points lying in the intersection of any line and the curve \mathcal{H} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sketch of proof

From system $J_{q,m,w}$ we can deduce

$$\begin{cases} \sum_{i=1}^{d} z_i = 0\\ \sum_{i=1}^{d} x_i z_i = 0\\ \vdots\\ \sum_{i=1}^{d} x_i^{d-2} z_i = 0 \end{cases}$$

and we know that the z_i are all non-zero if x_i are all distinct or all equal. For the same reason, we can also deduce that y_i are all distinct or all equal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

If the x_i are all equal or the y_i are all equal, we have finished. Otherwise, we do an affine transformation

$$\left\{ \begin{array}{ll} x = x' \\ y = y' + ax' \end{array} \right. \quad a \in \mathbb{F}_{q^2}$$

such that at least two y_i are equal. Substituting the above transformation into the system $J_{q,m,w}$ and making elementary row operations we get once again the system $J_{q,m,w}$. But, since at least two y_i are equal, they are all equal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Corner code

Theorem

The minimum weight words of a corner code H_d^0 are

$$A_d=q^2(q^2-1)inom{q}{d-1}rac{q^3-d+1}{d}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

To prove the theorem we use the previous proposition: the minimum weight words correspond to points lying in the intersection of any line and the curve \mathcal{H} .

Sketch of proof

We have to solve the system

$$\begin{cases} x^{q+1} = y^q + y \\ y = ax + b \end{cases}$$

from which we have $a^q x^q + b^q + ax + b = x^{q+1}$. If $b^q + b + a^{q+1} = 0$, the equation becomes $(x - a^q)^{q+1} = 0$, so we have only one point; there are exactly q^3 such possibilities for (a, b). If $b^q + b + a^{q+1} = c \neq 0$, we have that $c \in \mathbb{F}_q$, the equation becomes $(x - a^q)^{q+1} = (\alpha^r)^{q+1}$, where α is a primitive element of \mathbb{F}_{q^2} and r is an integer, so that we have exactly q + 1 solutions. So, we have $(q^4 - q^3)$ ways to choose a line y = ax + b, $\binom{q+1}{d}$ ways to choose d points on it, $q^2 - 1$ solutions in z_i .

Sketch of proof

The number of words corresponding to points on a vertical line is

$$q^2(q^2-1) \binom{q}{d}$$

whereas those corresponding to non-vertical lines are:

$$(q^4-q^3)(q^2-1)inom{q+1}{d}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So to find the result of the theorem we have to sum these two values.

The problem of finding the number of codewords of weight d + 1 for a first-phase hermitian code, where d is the distance, is more complicated.

In fact, we can not say in general that such codewords correspond to points on a same line.

Nevertheless, we can count codewords that have this property. By similar arguments, we can state the following theorems.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The case of vertical lines

Theorem (corner code and edge code)

The number of words of weight d + 1 with $x_1 = \cdots = x_{d+1}$ of a corner code H_d^0 and of an edge code H_d^j is:

$$A_{d+1} = q^2(q^4 - (d+1)q^2 + d)inom{q}{d+1}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The case of non-vertical lines

Theorem (corner code)

The number of words of weight d + 1 of a corner code H_d^0 with (x_i, y_i) lying on a non-vertical line is:

$$A_{d+1} = (q^4 - q^3)(q^4 - (d+1)q^2 + d)inom{q+1}{d+1}.$$

Theorem (edge code)

The number of words of weight d + 1 of an edge code H_d^j with (x_i, y_i) lying on a non-vertical line is:

$$A_{d+1} = (q^4 - q^3)(q^2 - 1) inom{q+1}{d+1}.$$

The case of H_3^0

To count the number of words with weight w = 4, we observed that:

- ▶ in system $J_{q,m,4}$ we can have 4 points on a same line;
- we can not have 3 points on a same line and the other outside;
- we can have 4 points in general position, that is, no 3 of them lie on a same line.

So finally we have

$$egin{aligned} \mathcal{A}_4 &= \left(inom{q^3}{4} - q^2 inom{q}{3} (q^3 - q) - (q^4 - q^3) inom{q+1}{3} (q^3 - q - 1)
ight) (q^2 - 1) + \ &+ \left(q^2 inom{q}{4} + (q^4 - q^3) inom{q+1}{4}
ight) inom{q+1}{4} inom{q}{2} (q^4 - 4q^2 + 3) \end{aligned}$$

The case of H_3^1

To count the number of words with weight w = 4, we observed that:

- ▶ in system $J_{q,m,4}$ we can have 4 points on a same line;
- we can not have 3 points on a same line and the other outside;
- we can have 2 points on a vertical line and 2 on another one;
- we can have 4 points on a same parabola of the form $y = ax^2 + bx + c$.

So finally we have

$$A_4 = q^2 {q \choose 4} (q^4 - 4q^2 + 3) + rac{q^4(q^2 - 1)^2(q - 1)^2}{8} + (q^2 - 1) \sum_{k=4}^{2q} N_k {k \choose 4}$$

where N_k is the number of parabolas that intersect \mathcal{H} in exactly k points.

Other cases

We also studied codes H_3^2 (with w = 4), H_4^0 and H_4^1 (with w = 5). In general, we have to study the rank of the matrix

$$H' = \begin{pmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_w \\ \vdots & \ddots & \vdots \\ x_1^r y_1^s & \cdots & x_w^r y_w^s \\ \cdots & \cdots & \cdots \end{pmatrix}$$

for any choice of w points (x_i, y_i) of \mathcal{H} .

For these three codes, we have that all codewords of weight d + 1 correspond to points on a same line (so that we can apply the previous theorems).

Work in progress

- We believe that many of these ideas can be applied to other affine-variety codes.
- ► We are trying to find the number of parabolas that intersect *H* in exactly *k* points.
- By computer elaborations we see that, if we write the list of A_d for every Hermitian code in phase three, ordered by dimension, then that list is symmetric.
- We are trying to see if, for codewords of minimum weight in every phase, they always correspond to points grouped in lines or conics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <