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PRELIMINARIES
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Two primitives, one primitive?

An interesting problem in cryptography is how to construct, given some
cryptographic primitives, another primitive.
In particular, we are interested in building a block cipher starting from a
(keyed) hash function and a stream cipher:

hash function
ց

block cipher
ր

stream cipher

Often stream ciphers and hash functions are already implemented in
hardware solutions, with good timing performance. And achieving a
satisfactory implementation of a (traditional) block cipher is a challenge.
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Luby-Rackoff construction

Luby and Rackoff in

M. Luby and C. Rackoff, How to construct pseudorandom
permutations from pseudorandom functions, SIAM J. Comput. 17
(1988), no. 2, 373–386.

propose a very general way to obtain one pseudo-random permutation
from two pseudo-random functions, and this result might be used to
design a block cipher.
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The Oracles

Definition

Let n ≥ 1. We say that An is a key-recovery oracle for a given block
cipher, if it is able to find efficiently the key, given any set of n
plaintext-ciphertext pairs { (Pi ,Ci ) }1≤i≤n

.

(P1,C1)

(P2,C2)

(P3,C3)

(P4,C4)

...

K
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The oracles

If n = 1 then we call A1 a single-pair oracle.

If n ≥ 2 then we call An a multi-pair oracle.

Note that A1 is much more powerful than An, since it is able to recover
the key using just one pair rather than An, which needs more pairs.

Indeed, if N ≥ n, then the existence of An obviously implies the existence
of AN (just dump N − n pairs!).
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Block cipher resistance to key-recovery attacks

We can classify informally block ciphers w.r.t. to their resistance to
key-recovery attacks.

very strong � there is not An

strong � there is not A1

weak � there is An

very weak � there is A1
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Caution!

In this presentation we are neglecting several aspects of the problem, that
would otherwise lead us too far. In particular:

We will not delve into complexity details and so you should use
“common sense”; for example, you must consider also the effort by
An in collecting its input (and so n cannot be huge).

although we present our oracle as a known-plaintext attack, our proofs
can be modified (becoming more complex) to a chosen-plaintext
attack or even a chosen-ciphertext attack; however, I doubt that our
proofs can be modified easily to cover also an adaptive version.

other kinds of attacks could be considered, such as
global-reconstruction, partial-key recovery, etc. .
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Tools

We make these assumptions:

F = F2,

small space Fl , big space Fr ,

the key space is K = F2k or K = F3k ,

K ∈ Fk , L ∈ Fl , R ∈ Fr , r > l , k ≥ l ,

S : Fl −→ Fr is an injective function (stream cipher),

H : Fr −→ Fl is a surjective function (hash function),

H is a set of surjective functions HK : Fr −→ Fl (keyed hash
function) satisfying:

for a random R ’s the map HR : Fk 7→ Fl , HR(K ) = HK (R), is
surjective.
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The ciphers by Anderson and Biham

In

R. Anderson and E. Biham, Two practical and provably secure block
ciphers: BEAR and LION, Proc. of FSE 1996, LNCS, vol. 1039,
Springer, 1996, pp. 113–120.

three block ciphers are presented:

BEAR,

LION,

LIONESS.

They are built from hash functions and stream ciphers. In the same article
several results on their provable security are shown (and a few are claimed
without proofs).
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BEAR

Let k > l , K = F2k .

ENCRYPTION DECRYPTION

L = L+ HK1
(R) L = L′ + HK2

(R ′)

R ′ = R + S(L) R = R ′ + S(L)

L′ = L+ HK2
(R ′) L = L+ HK1

(R)
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BEAR

Definition (S property)

S is one-way if it is hard to find the seed X given any random Y such that
Y = S(X ).

The following theorem is proved in the article of Anderson and Biham.

Theorem

If there exists A1 for BEAR, then S is not one-way.

The following corollary is obvious.

Corollary

If S is one-way then A1 does not exist for BEAR.
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Definition (properties of H and H)

H is:

one-way if it is hard to find the seed X given any random Y such that
Y = H(X );

collision-free if it is hard to find unequal X and Y such that
H(Y ) = H(X ).

Similarly for the keyed function H.

The following theorem is proved by Anderson and Biham.

Theorem

If there exists A1 for BEAR, then H is neither one-way nor collision-free.

Corollary

If H is one-way and collision-free, then A1 does not exist for BEAR.
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LION

Let k = l , K = F2k .

ENCRYPTION DECRYPTION

R = R + S(L+ K1) R = R ′ + S(L′ + K2)

L′ = L+ H(R) L = L′ + H(R)

R ′ = R + S(L′ + K2) R = R + S(L+ K1)
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LION

Anderson and Biham claim (without proofs) also similar results for LION.

Theorem

If there exists A1 for LION, then S is not one-way.

Corollary

If S is one-way then A1 does not exist for LION.

Theorem

If there exists A1 for LION, then H is neither one-way nor collision-free.

Corollary

If H is one-way and collision-free then A1 does not exist for LION.
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LIONESS

ENCRYPTION DECRYPTION

R = R + S(L+ K1) L = L′ + HK4
(R ′)

L = L+ HK2
(R) R = R ′ + S(L+ K3)

R ′ = R + S(L+ K3) L = L+ HK2
(R)

L′ = L+ HK4
(R ′) R = R + S(L+ K1)
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LIONESS

The following results are claimed by Anderson and Biham.

Theorem

If there exists A1 for LIONESS, then

S is not one-way

H is neither one-way nor collision-free.

Corollary

In LIONESS if

H is collision-free or H is one-way or S is one-way

then A1 does not exist.
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OUR RESULTS

M. Piva (University of Trento) BEAR and LION 12nd September, 2011 21 / 51



Our results in one sentence

Our contribution consists in showing that no An exists for BEAR, LION
and LIONESS.

We are able to get this improvement by using slightly different hypotheses
on the primitives.
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H key-resistance

Definition

Given a keyed hash function H = { HK }
K∈Fk , we say that

H is key-resistant
if, given a pair (Z ,R) such that Z = HK (R) for a random K and a
random R , then it is hard to find K .

In other words, the equation

Z = HK (R)

is hard to solve in K .
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S key-resistance

Definition

Given a stream cipher S , we say that
S is key-resistant
if, given a pair (Z , L) such that Z = S(L+ K1) for random K1, L ∈ Fl ,
then it is hard to find K1.

Remark

We could have a different action induced by the keys, say, S(τK (L)) instead of
S(L+ K ). All subsequent results will still hold, provided the action is regular
(i.e., when {τK}K∈K is a regular subgroup of Sym(Fl )).
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Our improvements for BEAR

We can obtain the following result for BEAR if H is key-resistant.

Theorem (H key-resistant =⇒ ∄An)

If there exists An for BEAR, then H is not key-resistant.

As usual, the corollary is obvious.

Corollary

If the (keyed) hash function is key-resistant, then no multi-pair oracle
exists for BEAR.
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Proof of the theorem

Proof.
We must solve (in K ) the equation: Z = HK (R).
Let us choose a set { Li }1≤i≤n

⊂ Fl and consider the set of plaintexts
{ (Li ,R) }1≤i≤n

.
It is possible to generate a set of ciphertexts { (L′

i
,R ′

i
) }

1≤i≤n
by choosing

K1 = K and any K2 ∈ Fk . Indeed, we can compute:

Li = Li + Z

R ′
i = R + S(Li + Z )

L′i = Li + Z + HK2
(R ′

i ).

With { ((Li ,R), (L
′
i
,R ′

i
)) }

1≤i≤n
as input, An outputs both K2, which was

already known, and K1, which was unknown.
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BEAR2

We have not been able to obtain a similar result for BEAR with similar
hypotheses on the stream cipher S .
We can consider a variation of BEAR’s scheme. We call this scheme
BEAR2.

ENCRYPTION DECRYPTION

L = L+ HK1
(R) L = L′ + HK3

(R ′)

R ′ = R + S(L+ K2) R = R ′ + S(L+ K2)

L′ = L+ HK3
(R ′) L = L+ HK1

(R)
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Our results on BEAR2

Theorem (H key-resistant =⇒ ∄An)

If there exists An for BEAR2, then H is not key-resistant.

Proof.

Obvious adaption of the proof of Th. 16.
This time we choose any K2 and K3, obtaining K1 again.
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Our results on BEAR2

Theorem (S key-resistant =⇒ ∄An)

If there exists An for BEAR2, then S is not key-resistant.

Corollary

If the stream cipher is key-resistant, no multi-pair key-recovery oracle
exists for BEAR2.
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Our results on BEAR2

Proof.
We must solve (in K ) the equation: Z = S(X + K ).
Let us choose a set { Ri }1≤i≤n

⊂ Fr and any K1,K3 ∈ Fk . It is possible
to generate plaintext/ciphertext pairs by choosing K2 = K and computing
Li = X + HK1

(Ri ), so that we can encrypt:

Li = Li + HK1
(Ri ) = X

R ′
i = Ri + Z

L′i = X + HK3
(R ′

i ).

We give in input to An the set { (Li ,Ri ), (L
′
i
,R ′

i
) }

1≤i≤n
. An returns K1,

K3 which were already known, and K2, which was unknown.
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Our results on BEAR2

We can summarize our findings on BEAR2 in the following corollary.

Corollary

No multi-pair key-recovery oracle exists for BEAR2 if the hash function is
key-resistant or the stream cipher is key-resistant.

Note that for BEAR the non-existence of An does not follow from
properties of S but only from those of H.
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Our improvements for LION

We can obtain the following result for LION if S is key-resistant.

Theorem (S key-resistant =⇒ ∄An)

For LION, if there exists An then S is not key-resistant.

Corollary

If the stream cipher is key-resistant, no (efficient) multi-pair oracle exists
for LION.
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Proof of the theorem

Proof.

Let us choose a set { Ri }1≤i≤n
⊂ Fr and consider the set of plaintexts

{ (L,Ri ) }1≤i≤n
. It is possible to generate a set of ciphertexts

{ (L′
i
,R ′

i
) }

1≤i≤n
by choosing any sub-key K2 and computing:

R i = Ri + S(L+ K1) = Ri + Z

L′i = Li + H(Ri + Z )

R ′
i = Ri + Z + S(L′i + K2).

Using An we can find K2, which was already known, and K1, which was
unknown.

Note that we are not able to obtain a similar result from properties of H.
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LION2

We can consider a variation of LION’s scheme in order to obtain a result
similar to the previous theorem, when H is key-resistant.
We call this scheme LION2.

ENCRYPTION DECRYPTION

R = R + S(L+ K1) R = R ′ + S(L′ + K3)

L′ = L+ HK2
(R) L = L′ + HK2

(R)

R ′ = R + S(L′ + K3) R = R + S(L+ K1)
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Our results on LION2

Theorem (S key-resistant =⇒ ∄An)

If there exists An for LION2 then S is not key-resistant.

Proof.

Obvious adaption of the proof of Th. 22.
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Our results on LION2

Theorem (H key-resistant =⇒ ∄An)

If there exists An for LION2 then H is not key-resistant.

Corollary

If the hash function is key-resistant, no (efficient) multi-pair oracle exists
for LION2.
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Proof of the theorem

Proof.

Let us choose a set { Li }1≤i≤n
⊂ Fl and any sub-keys K1, K3 ∈ Fl . It is

possible to generate plaintext/ciphertext pairs by choosing
Ri = X + S(Li + K1) and computing:

R i = Ri + S(Li + K1) = X + S(Li + K1) + S(Li + K1) = X

L′i = Li + Z

R ′
i = X + S(L′i + K3).

We give in input to An the set { (Li ,Ri ), (L
′
i
,R ′

i
) }. An returns K1, K3,

which were already known, and K2, which was unknown.
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Our results on LION2

We can summarize our findings on LION2 in the following corollary.

Corollary

No efficient multi-pair key-recovery oracle exists for LION2 if the hash
function is key-resistant or the stream cipher is key-resistant.

Recall that LION’s resistance to key-recovery attacks is guaranteed only by
the key-resistance of S .
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Our improvements for LIONESS

Theorem (S key-resistant =⇒ ∄An)

For LIONESS, if there exists An then S is not key-resistant.

Proof.
Let us choose a set { Ri }1≤i≤n

⊂ Fr and consider the set of plaintexts
{ (L,Ri ) }1≤i≤n

. It is possible to generate a set of ciphertexts
{ (L′

i
,R ′

i
) }

1≤i≤n
by choosing any sub-keys K2,K3,K4 and computing:

R i = Ri + Z

Li = L+ HK2
(R i)

R ′
i = Ri + S(Li + K3)

L′ = Li + HK4
(R ′

i ).

Using An we can find K2,K3,K4, which were already known, and K1,
which was unknown.
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Our improvements for LIONESS

Theorem (H key-resistant =⇒ ∄An)

For LIONESS, if there exists An then H is not key-resistant.

Proof.
Let us choose a set { Li }1≤i≤n

⊂ Fl and consider the set of ciphertexts
{ (L′

i
,R ′) }

1≤i≤n
. It is possible to generate a set of plaintexts

{ (Li ,Ri) }1≤i≤n
by choosing any sub-keys K1,K2,K3 and decrypting:

Li = L′i + Z

Ri = R ′ + S(Li + K3)

Li = Li + HK2
(Ri)

Ri = Ri + S(Li + K1).

Using An we can find K1, K2, K3, which were already known, and K4,
which was unknown.
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CONCLUSIONS
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Conclusions on BEAR

Let us consider a keyed hash function with a very weak requirement, i.e.,
that it is (more or less) surjective both fixing the key and with respect to
the keys. Anderson and Biham prove that no single-pair oracle exists for
BEAR, under the assumption that the stream seed is difficult to recover
OR the hash function is collision resistant OR the hash preimage is hard to
recover.
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Conclusions on BEAR

We prove that no multi-pair oracle exists for BEAR under the assumption
that the hash function is key-resistant.

We also suggest a slight modification of BEAR, BEAR2, where we can
prove that no multi-pair oracle exists under the assumption that the hash
function is key-resistant OR the stream cipher is key-resistant.
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Conclusions on LION

Anderson and Biham claim that no single-pair oracle exists for LION,
under the assumption that

the stream seed is difficult to recover OR the hash function is collision
resistant OR the hash preimage is hard to recover.
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Conclusions on LION

As in the case of BEAR, we prove that no multi-pair oracle exists for LION
under the assumption that the stream cipher is key-resistant, which is
equivalent to “the stream preimage is hard to recover” in many practical
situations.

We also suggest a slight modification of LION, LION2, where we can
prove that no multi-pair oracle exists under the assumption that

the hash function is key-resistant OR the stream cipher is key-resistant.
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Conclusions on LIONESS

As regards key-recovery attacks, LIONESS’s virtues are the sum of LION’s
and BEAR’s virtues.

So it is possible to prove the non-existence of one-pair oracles using the
assumptions by Anderson and Biham,
but we can indeed prove the non-existence of multi-pair oracles under only
the key-resistance assumption.
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MORRIN’S ATTACK
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Morrin’s attack

In

P. Morin, Provably secure and efficient block ciphers, Proc. of
SAC 1996, 1996, pp. 30–37.

P. Morin proposed an attack on BEAR which can be generalized to any
Luby-Rackoff scheme. We provide a sketch of his attack.

BEAR
ENCRYPTION DECRYPTION

L = L+ HK1
(R) L = L′ + HK2

(R ′)

R ′ = R + S(L) R = R ′ + S(L)

L′ = L+ HK2
(R ′) L = L+ HK1

(R)

The complexity of a brute force search on BEAR is = 22k
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Morin’s attack

Given a plaintext/ciphertext pair, P = (L,R), C = (L′,R ′) the attacker

computes L+ HK1
(R) for all 2k possible values of K1

computes L′ + HK2
(R ′) for all 2k possible values of K2

compares these tables of values until he finds
L+ HK1

(R) = L′ + HK2
(R ′)

tests if (K1,K2) is the correct pairs by checking:
S(L+ HK1

(R)) = R + R ′

the complexity of Morrin’s attack is 2k+1 (recall that k > l).
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Morin’s attack

The attack by Morin has somehow diminished the confidence in the
robustness of these schemes.

However, the attack succeeds only because its brute-force search on the
round functions contradicts the key-resistance of the hash function and of

the stream function.
So, whenever H or S remain key-resistant, both LION and BEAR are

immune to such attacks.
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Thank you for your attention
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