
An introduction to Hash functions

Anna Rimoldi

eRISCS - Universitée de la Méditerranée, Marseille

Secondo Workshop di Crittografia BunnyTN 2011

A. Rimoldi (eRISCS) Hash function 12 September 2011 1 / 27

An overview

Hash functions are means securely reduce a string of arbitrarily length
into a fixed length digit.

The main problem is the definition of securely.

Use of hash function: signature scheme, store password files, key
derivation function, tags of files to detect changes, inside PRNGs,
inside protocols, etc...

A. Rimoldi (eRISCS) Hash function 12 September 2011 2 / 27

An overview

Hash functions are means securely reduce a string of arbitrarily length
into a fixed length digit.

The main problem is the definition of securely.

Use of hash function: signature scheme, store password files, key
derivation function, tags of files to detect changes, inside PRNGs,
inside protocols, etc...

A. Rimoldi (eRISCS) Hash function 12 September 2011 2 / 27

An overview

Hash functions are means securely reduce a string of arbitrarily length
into a fixed length digit.

The main problem is the definition of securely.

Use of hash function: signature scheme, store password files, key
derivation function, tags of files to detect changes, inside PRNGs,
inside protocols, etc...

A. Rimoldi (eRISCS) Hash function 12 September 2011 2 / 27

Classical definitions

Let X be the set of all possible messages. Let Y be the set of all possible
message digests (or authentication tags). Let K be the set of all possible
keys.

(keyed) Hash function

For any key k in the key-space K,
we define (keyed) hash function
as the function

hk : X → Y.

(unkeyed) Hash function

An unkeyed hash function is a
function hk : X → Y, where
k ∈ K but |K| = 1, i.e. there is
only a possible key.

The set X could be a finite or an infinite set.
We will always assume that |X | ≥ |Y|.
In practical situation, we will assume the stronger condition |X | ≥ 2|Y|.
Moreover, a common choice for |Y| consist of having at least 160-bit of
message digests.

A. Rimoldi (eRISCS) Hash function 12 September 2011 3 / 27

Classical definitions

Let X be the set of all possible messages. Let Y be the set of all possible
message digests (or authentication tags). Let K be the set of all possible
keys.

(keyed) Hash function

For any key k in the key-space K,
we define (keyed) hash function
as the function

hk : X → Y.

(unkeyed) Hash function

An unkeyed hash function is a
function hk : X → Y, where
k ∈ K but |K| = 1, i.e. there is
only a possible key.

The set X could be a finite or an infinite set.
We will always assume that |X | ≥ |Y|.
In practical situation, we will assume the stronger condition |X | ≥ 2|Y|.
Moreover, a common choice for |Y| consist of having at least 160-bit of
message digests.

A. Rimoldi (eRISCS) Hash function 12 September 2011 3 / 27

Valid pair

A pair (x̄ , ȳ) ∈ X × Y is said to be a valid pair under the key k if
hk(x̄) = ȳ .

Obviously, it is convenient to prevent the construction of certain types of
valid pairs by an adversary.

A. Rimoldi (eRISCS) Hash function 12 September 2011 4 / 27

Classical security requirement

If an hash function is to be considered secure, it should be the case that
these three problems are difficult to solve:

1 Preimage: given h : X → Y and ȳ ∈ Y, is difficult to find x̄ ∈ X
such that h(x̄) = ȳ .

2 Second Preimage: given h : X → Y and x̄ ∈ X , is difficult to find
x∗ ∈ X (with x∗ 6= x̄) such that h(x∗) = h(x̄).

3 Collision: given h : X → Y, is difficult to find x∗, x̄ ∈ X (with
x∗ 6= x̄) such that h(x∗) = h(x̄).

In case 1 we say that the hash function is one-way or Preimage resistant;

in case 2 we say that h is Second Preimage resistant;
in case 3 we say that h is Collision resistant.

A. Rimoldi (eRISCS) Hash function 12 September 2011 5 / 27

Classical security requirement

If an hash function is to be considered secure, it should be the case that
these three problems are difficult to solve:

1 Preimage: given h : X → Y and ȳ ∈ Y, is difficult to find x̄ ∈ X
such that h(x̄) = ȳ .

2 Second Preimage: given h : X → Y and x̄ ∈ X , is difficult to find
x∗ ∈ X (with x∗ 6= x̄) such that h(x∗) = h(x̄).

3 Collision: given h : X → Y, is difficult to find x∗, x̄ ∈ X (with
x∗ 6= x̄) such that h(x∗) = h(x̄).

In case 1 we say that the hash function is one-way or Preimage resistant;
in case 2 we say that h is Second Preimage resistant;

in case 3 we say that h is Collision resistant.

A. Rimoldi (eRISCS) Hash function 12 September 2011 5 / 27

Classical security requirement

If an hash function is to be considered secure, it should be the case that
these three problems are difficult to solve:

1 Preimage: given h : X → Y and ȳ ∈ Y, is difficult to find x̄ ∈ X
such that h(x̄) = ȳ .

2 Second Preimage: given h : X → Y and x̄ ∈ X , is difficult to find
x∗ ∈ X (with x∗ 6= x̄) such that h(x∗) = h(x̄).

3 Collision: given h : X → Y, is difficult to find x∗, x̄ ∈ X (with
x∗ 6= x̄) such that h(x∗) = h(x̄).

In case 1 we say that the hash function is one-way or Preimage resistant;
in case 2 we say that h is Second Preimage resistant;
in case 3 we say that h is Collision resistant.

A. Rimoldi (eRISCS) Hash function 12 September 2011 5 / 27

Security hypothesis for specific applications

As hash functions are widely used, various requirements are needed to
ensure the security of construction based on hash functions.

Collision resistance → signatures, MACs.

Second Preimage resistance → signatures.

Preimage resistance → signatures , password files, bit commitment
(for hiding).

Pseudo Random Functions → key derivation, MACs.

Pseudo Random Oracle → protocols, PRNGs.

A. Rimoldi (eRISCS) Hash function 12 September 2011 6 / 27

We want the hash function to behave in a way which would prevent any
attacker from doing anything malicious to inputs to the hash function:

One-wayness (no inversion).

No collisions (up to the birthday bound).

No second preimages.

Outputs which are “well” distributed.

Therefore the ideal hash function attaches for each possible message x a
random value as h(x).

If an hash function is well designed, it should be the case that the only
efficient way to determined the value h(x) for a given x is to actually
evaluate the function h at the value x . This should remain true even if
many other values h(x1), h(x2), . . . , have already been computed.

A. Rimoldi (eRISCS) Hash function 12 September 2011 7 / 27

We want the hash function to behave in a way which would prevent any
attacker from doing anything malicious to inputs to the hash function:

One-wayness (no inversion).

No collisions (up to the birthday bound).

No second preimages.

Outputs which are “well” distributed.

Therefore the ideal hash function attaches for each possible message x a
random value as h(x).

If an hash function is well designed, it should be the case that the only
efficient way to determined the value h(x) for a given x is to actually
evaluate the function h at the value x . This should remain true even if
many other values h(x1), h(x2), . . . , have already been computed.

A. Rimoldi (eRISCS) Hash function 12 September 2011 7 / 27

We want the hash function to behave in a way which would prevent any
attacker from doing anything malicious to inputs to the hash function:

One-wayness (no inversion).

No collisions (up to the birthday bound).

No second preimages.

Outputs which are “well” distributed.

Therefore the ideal hash function attaches for each possible message x a
random value as h(x).

If an hash function is well designed, it should be the case that the only
efficient way to determined the value h(x) for a given x is to actually
evaluate the function h at the value x . This should remain true even if
many other values h(x1), h(x2), . . . , have already been computed.

A. Rimoldi (eRISCS) Hash function 12 September 2011 7 / 27

Ideal Model

Bellare and Rogaway introduced a mathematical model of an ideal hash
function:

Random Oracle Model

h : X → Y is chosen randomly from the set of all possible hash functions.
We are only permitted oracle access to the function h.

This means that we are not given a formula or an algorithm to compute
values of h. The only way to compute h(x) is to query the oracle.

Although a true random oracle does not exists in real life, we hope that a
well designed hash function will behave like a random oracle.

It is useful to study the random oracle model and its security w.r.t. the
three problems introduced above.

A. Rimoldi (eRISCS) Hash function 12 September 2011 8 / 27

Ideal Model

Bellare and Rogaway introduced a mathematical model of an ideal hash
function:

Random Oracle Model

h : X → Y is chosen randomly from the set of all possible hash functions.
We are only permitted oracle access to the function h.

This means that we are not given a formula or an algorithm to compute
values of h. The only way to compute h(x) is to query the oracle.

Although a true random oracle does not exists in real life, we hope that a
well designed hash function will behave like a random oracle.

It is useful to study the random oracle model and its security w.r.t. the
three problems introduced above.

A. Rimoldi (eRISCS) Hash function 12 September 2011 8 / 27

Ideal Model

Bellare and Rogaway introduced a mathematical model of an ideal hash
function:

Random Oracle Model

h : X → Y is chosen randomly from the set of all possible hash functions.
We are only permitted oracle access to the function h.

This means that we are not given a formula or an algorithm to compute
values of h. The only way to compute h(x) is to query the oracle.

Although a true random oracle does not exists in real life, we hope that a
well designed hash function will behave like a random oracle.

It is useful to study the random oracle model and its security w.r.t. the
three problems introduced above.

A. Rimoldi (eRISCS) Hash function 12 September 2011 8 / 27

Ideal Model

Bellare and Rogaway introduced a mathematical model of an ideal hash
function:

Random Oracle Model

h : X → Y is chosen randomly from the set of all possible hash functions.
We are only permitted oracle access to the function h.

This means that we are not given a formula or an algorithm to compute
values of h. The only way to compute h(x) is to query the oracle.

Although a true random oracle does not exists in real life, we hope that a
well designed hash function will behave like a random oracle.

It is useful to study the random oracle model and its security w.r.t. the
three problems introduced above.

A. Rimoldi (eRISCS) Hash function 12 September 2011 8 / 27

Properties Relations

Coll

Sec

Pre

eSecaSec

ePreaPre

“everywhere” notion

In this contest, the adversary
selects the challenge and it is
then a randomly chosen key.

“always” notion

In this contest, the adversary
selects the key and it is then a
randomly chosen challenge.

Rogaway and Shrimpton (2004) considered the implications (or lack of
implication) between all seven security notions.

A. Rimoldi (eRISCS) Hash function 12 September 2011 9 / 27

Properties Relations

Coll

Sec

Pre

eSecaSec

ePreaPre

“everywhere” notion

In this contest, the adversary
selects the challenge and it is
then a randomly chosen key.

“always” notion

In this contest, the adversary
selects the key and it is then a
randomly chosen challenge.

Rogaway and Shrimpton (2004) considered the implications (or lack of
implication) between all seven security notions.

A. Rimoldi (eRISCS) Hash function 12 September 2011 9 / 27

Properties Relations

Coll

Sec

Pre

eSecaSec

ePreaPre

“everywhere” notion

In this contest, the adversary
selects the challenge and it is
then a randomly chosen key.

“always” notion

In this contest, the adversary
selects the key and it is then a
randomly chosen challenge.

Rogaway and Shrimpton (2004) considered the implications (or lack of
implication) between all seven security notions.

A. Rimoldi (eRISCS) Hash function 12 September 2011 9 / 27

Properties Relations

Coll

Sec

Pre

eSecaSec

ePreaPre

“everywhere” notion

In this contest, the adversary
selects the challenge and it is
then a randomly chosen key.

“always” notion

In this contest, the adversary
selects the key and it is then a
randomly chosen challenge.

Rogaway and Shrimpton (2004) considered the implications (or lack of
implication) between all seven security notions.

A. Rimoldi (eRISCS) Hash function 12 September 2011 9 / 27

Properties Relations

Coll

Sec

Pre

eSecaSec

ePreaPre

“everywhere” notion

In this contest, the adversary
selects the challenge and it is
then a randomly chosen key.

“always” notion

In this contest, the adversary
selects the key and it is then a
randomly chosen challenge.

Rogaway and Shrimpton (2004) considered the implications (or lack of
implication) between all seven security notions.

A. Rimoldi (eRISCS) Hash function 12 September 2011 9 / 27

CONSTRUCTION of HASH FUNCTIONS

A. Rimoldi (eRISCS) Hash function 12 September 2011 10 / 27

Iterated Hash function

It was understood that a hash function h should be constructed by
iterating a compression function f with fixed size inputs.

Let m, ` and t be positive integers, with t ≥ 1.
Let f : (F2)m+t → (F2)m be a compression function. We can construct an
iterated hash function h : X → Y based on f where

X =
∞⋃

i=m+t+1

(F2)i and Y = (F2)`.

H0 = IV
Hi = f (yi ,Hi−1)
h(x) = g(Ht)

A. Rimoldi (eRISCS) Hash function 12 September 2011 11 / 27

Iterated Hash function

It was understood that a hash function h should be constructed by
iterating a compression function f with fixed size inputs.

Let m, ` and t be positive integers, with t ≥ 1.
Let f : (F2)m+t → (F2)m be a compression function. We can construct an
iterated hash function h : X → Y based on f where

X =
∞⋃

i=m+t+1

(F2)i and Y = (F2)`.

H0 = IV
Hi = f (yi ,Hi−1)
h(x) = g(Ht)

A. Rimoldi (eRISCS) Hash function 12 September 2011 11 / 27

The evaluation of h consists of the following three main steps.

Preprocessing: given x̄ ∈ X s.t. |x̄ | ≥ m + t + 1, using a public
algorithm, we construct an element y ∈ (F2)rt (in fact we require that
|y | = rt ≥ |x | because the injectivity) as follows y = y1||y2|| · · · ||yr ,
where |yi | = t for 1 ≤ i ≤ r .

Processing: given a public initial value IV ∈ (F2)m, we construct a
sequence of elements in (F2)m, that we call z0, . . . , zr as follows:

z0 := IV

z1 := f (z0||y1)

z2 := f (z1||y2)
...

zr := f (zr−1||yr).

Output transformation: using a public function g = (F2)m → (F2)`

we compute g(zr) obtaining h(x̄) ∈ (F2)`.

A. Rimoldi (eRISCS) Hash function 12 September 2011 12 / 27

The evaluation of h consists of the following three main steps.

Preprocessing: given x̄ ∈ X s.t. |x̄ | ≥ m + t + 1, using a public
algorithm, we construct an element y ∈ (F2)rt (in fact we require that
|y | = rt ≥ |x | because the injectivity) as follows y = y1||y2|| · · · ||yr ,
where |yi | = t for 1 ≤ i ≤ r .

Processing: given a public initial value IV ∈ (F2)m, we construct a
sequence of elements in (F2)m, that we call z0, . . . , zr as follows:

z0 := IV

z1 := f (z0||y1)

z2 := f (z1||y2)
...

zr := f (zr−1||yr).

Output transformation: using a public function g = (F2)m → (F2)`

we compute g(zr) obtaining h(x̄) ∈ (F2)`.

A. Rimoldi (eRISCS) Hash function 12 September 2011 12 / 27

The evaluation of h consists of the following three main steps.

Preprocessing: given x̄ ∈ X s.t. |x̄ | ≥ m + t + 1, using a public
algorithm, we construct an element y ∈ (F2)rt (in fact we require that
|y | = rt ≥ |x | because the injectivity) as follows y = y1||y2|| · · · ||yr ,
where |yi | = t for 1 ≤ i ≤ r .

Processing: given a public initial value IV ∈ (F2)m, we construct a
sequence of elements in (F2)m, that we call z0, . . . , zr as follows:

z0 := IV

z1 := f (z0||y1)

z2 := f (z1||y2)
...

zr := f (zr−1||yr).

Output transformation: using a public function g = (F2)m → (F2)`

we compute g(zr) obtaining h(x̄) ∈ (F2)`.

A. Rimoldi (eRISCS) Hash function 12 September 2011 12 / 27

Comments

A commonly used preprocessing step consist of constructing
y ∈ (F2)rt using a padding function pad(x): y = x ||pad(x).

pad(x) typically incorporates the value of |x | and pads the result with
additional so that the resulting string y has length exactly rt.

The preprocessing step must ensure that the mapping x 7→ y is an
injection. If it is not one-to-one, then it may be possible to find
x 6= x ′ so that y = y ′. Then h(x) = h(x ′) is not collision resistant.

It is also easy to see that the absence of an output transformation
leads to an extension attack, that is, one can compute h(x ||y) from
h(x) and y , without knowing x , which is undesirable for some
applications.

A. Rimoldi (eRISCS) Hash function 12 September 2011 13 / 27

Comments

A commonly used preprocessing step consist of constructing
y ∈ (F2)rt using a padding function pad(x): y = x ||pad(x).

pad(x) typically incorporates the value of |x | and pads the result with
additional so that the resulting string y has length exactly rt.

The preprocessing step must ensure that the mapping x 7→ y is an
injection. If it is not one-to-one, then it may be possible to find
x 6= x ′ so that y = y ′. Then h(x) = h(x ′) is not collision resistant.

It is also easy to see that the absence of an output transformation
leads to an extension attack, that is, one can compute h(x ||y) from
h(x) and y , without knowing x , which is undesirable for some
applications.

A. Rimoldi (eRISCS) Hash function 12 September 2011 13 / 27

Comments

A commonly used preprocessing step consist of constructing
y ∈ (F2)rt using a padding function pad(x): y = x ||pad(x).

pad(x) typically incorporates the value of |x | and pads the result with
additional so that the resulting string y has length exactly rt.

The preprocessing step must ensure that the mapping x 7→ y is an
injection. If it is not one-to-one, then it may be possible to find
x 6= x ′ so that y = y ′. Then h(x) = h(x ′) is not collision resistant.

It is also easy to see that the absence of an output transformation
leads to an extension attack, that is, one can compute h(x ||y) from
h(x) and y , without knowing x , which is undesirable for some
applications.

A. Rimoldi (eRISCS) Hash function 12 September 2011 13 / 27

Comments (2)

Iterating f can degraded its security: a trivial example is Second Preimage

IV

z0 y1 y1

f
z1 y2 y2

f
z2 y3 y3

f
zr−1 yr yr

f
zr

IV = z1

z1 y2 y2

f
z2 y3 y3

f
z3 y4 y4

f
zr−1 yr yr

f
zr

A. Rimoldi (eRISCS) Hash function 12 September 2011 14 / 27

Comments (2)

Iterating f can degraded its security: a trivial example is Second Preimage

IV

z0 y1 y1

f
z1 y2 y2

f
z2 y3 y3

f
zr−1 yr yr

f
zr

IV = z1

z1 y2 y2

f
z2 y3 y3

f
z3 y4 y4

f
zr−1 yr yr

f
zr

A. Rimoldi (eRISCS) Hash function 12 September 2011 14 / 27

Merkle-Damgard construction

The Merkle-Damgard construction is an iterated hash function which
permits a formal security proof to be given.

Theorem

Let f : (F2)m+t → (F2)m be a collision resistant compression function,
where t ≥ 1. Then there exists a collision resistant hash function
h : X → Y, where X =

⋃∞
i=m+t+1(F2)i and Y = (F2)m.

Moreover the number of times f is computed in the evaluation of h is at
most

1 +

⌈
n

t − 1

⌉
if t ≥ 2

2n + 2 if t = 1

where |x | = n.

A. Rimoldi (eRISCS) Hash function 12 September 2011 15 / 27

Merkle-Damgard construction

The Merkle-Damgard construction is an iterated hash function which
permits a formal security proof to be given.

Theorem

Let f : (F2)m+t → (F2)m be a collision resistant compression function,
where t ≥ 1. Then there exists a collision resistant hash function
h : X → Y, where X =

⋃∞
i=m+t+1(F2)i and Y = (F2)m.

Moreover the number of times f is computed in the evaluation of h is at
most

1 +

⌈
n

t − 1

⌉
if t ≥ 2

2n + 2 if t = 1

where |x | = n.

A. Rimoldi (eRISCS) Hash function 12 September 2011 15 / 27

In other words, (in case t ≥ 2)

given our collision resistant compression function f ,
if the padding contains the length of the input string
and if f is Preimage resistant,

⇓

the iterated hash function based on f will be a collision resistant hash
function.

A. Rimoldi (eRISCS) Hash function 12 September 2011 16 / 27

Improving MD iteration

Multi collision attack and impact on concatenation (Joux 2004)

Long message Second Preimage arrack (Kelsey and Schneier 2005)

Herding attack (Kelsey Kohono 2006)

salt + output transformation + counter + wide pipe

A. Rimoldi (eRISCS) Hash function 12 September 2011 17 / 27

Ideals vs standard

Standard model proofs

Consider standard (real world) functionalities
Often results in inefficient (or not provable) scheme

Ideal Model Proof

Better than ad hoc design
More efficient schemes
Excludes “generics” attack
Uses ideal functionalities: random oracles, ideal block
ciphers/permutations
Weaker security guarantee than standard model.

A. Rimoldi (eRISCS) Hash function 12 September 2011 18 / 27

Ideals vs standard

Standard model proofs

Consider standard (real world) functionalities
Often results in inefficient (or not provable) scheme

Ideal Model Proof

Better than ad hoc design
More efficient schemes
Excludes “generics” attack
Uses ideal functionalities: random oracles, ideal block
ciphers/permutations
Weaker security guarantee than standard model.

A. Rimoldi (eRISCS) Hash function 12 September 2011 18 / 27

Unfortunately, very few hash functions are designed based on a strong
compression function.

A. Rimoldi (eRISCS) Hash function 12 September 2011 19 / 27

COMPRESSION FUNCTION

based on block ciphers

permutations

based on arithmetic primitive

A. Rimoldi (eRISCS) Hash function 12 September 2011 20 / 27

(Iterated) block ciphers

Let V = P = C = (Fq)n be the space of all possible messages.
Let K = (Fq)` be the space of all possible keys.

Definition

We say that φ : P ×K → C is an (algebraic) block cipher if, for any
k ∈ K, the function

φk : V → V , φk(x) = φ(x , k).

is a permutation of V .

Any key k ∈ K specifies an encryption function φk .

Iterated: the encryption proceeds through N rounds: φk = τ1
k ◦ · · · ◦ τNk

Any round function τhk : γλσk where γ is a non linear function

A. Rimoldi (eRISCS) Hash function 12 September 2011 21 / 27

(Iterated) block ciphers

Let V = P = C = (Fq)n be the space of all possible messages.
Let K = (Fq)` be the space of all possible keys.

Definition

We say that φ : P ×K → C is an (algebraic) block cipher if, for any
k ∈ K, the function

φk : V → V , φk(x) = φ(x , k).

is a permutation of V .

Any key k ∈ K specifies an encryption function φk .

Iterated: the encryption proceeds through N rounds: φk = τ1
k ◦ · · · ◦ τNk

Any round function τhk : γλσk where γ is a non linear function

A. Rimoldi (eRISCS) Hash function 12 September 2011 21 / 27

(Iterated) block ciphers

Let V = P = C = (Fq)n be the space of all possible messages.
Let K = (Fq)` be the space of all possible keys.

Definition

We say that φ : P ×K → C is an (algebraic) block cipher if, for any
k ∈ K, the function

φk : V → V , φk(x) = φ(x , k).

is a permutation of V .

Any key k ∈ K specifies an encryption function φk .

Iterated: the encryption proceeds through N rounds: φk = τ1
k ◦ · · · ◦ τNk

Any round function τhk : γλσk where γ is a non linear function

A. Rimoldi (eRISCS) Hash function 12 September 2011 21 / 27

(Iterated) block ciphers

Let V = P = C = (Fq)n be the space of all possible messages.
Let K = (Fq)` be the space of all possible keys.

Definition

We say that φ : P ×K → C is an (algebraic) block cipher if, for any
k ∈ K, the function

φk : V → V , φk(x) = φ(x , k).

is a permutation of V .

Any key k ∈ K specifies an encryption function φk .

Iterated: the encryption proceeds through N rounds: φk = τ1
k ◦ · · · ◦ τNk

Any round function τhk : γλσk where γ is a non linear function

A. Rimoldi (eRISCS) Hash function 12 September 2011 21 / 27

(Iterated) block ciphers

Let V = P = C = (Fq)n be the space of all possible messages.
Let K = (Fq)` be the space of all possible keys.

Definition

We say that φ : P ×K → C is an (algebraic) block cipher if, for any
k ∈ K, the function

φk : V → V , φk(x) = φ(x , k).

is a permutation of V .

Any key k ∈ K specifies an encryption function φk .

Iterated: the encryption proceeds through N rounds: φk = τ1
k ◦ · · · ◦ τNk

Any round function τhk : γλσk where γ is a non linear function

A. Rimoldi (eRISCS) Hash function 12 September 2011 21 / 27

Block cipher based

The first construction for hash functions were all based on block ciphers
(in particular based on DES).
Advantages:
confidence of he community in a block cipher design
very compact implementation.

Problems:
how to construct hash function with a result larger than the block length
(not sufficient to obtain collision resistance)

small deviation from being ideal can result in devastating attacks on Hash
functions based block ciphers

12 secure construction → security proof in ideal model:

Matyas Meyer Oseas: Hi = φHi−1
(x)⊕ xi

Miyaguchi-Preneel: Hi = φHi−1
(x)⊕ xi ⊕ Hi−1

Davies Meyer: Hi = φxi (Hi−1)(x)⊕ Hi−1

A. Rimoldi (eRISCS) Hash function 12 September 2011 22 / 27

Block cipher based

The first construction for hash functions were all based on block ciphers
(in particular based on DES).
Advantages:
confidence of he community in a block cipher design
very compact implementation.
Problems:
how to construct hash function with a result larger than the block length
(not sufficient to obtain collision resistance)
small deviation from being ideal can result in devastating attacks on Hash
functions based block ciphers

12 secure construction → security proof in ideal model:

Matyas Meyer Oseas: Hi = φHi−1
(x)⊕ xi

Miyaguchi-Preneel: Hi = φHi−1
(x)⊕ xi ⊕ Hi−1

Davies Meyer: Hi = φxi (Hi−1)(x)⊕ Hi−1

A. Rimoldi (eRISCS) Hash function 12 September 2011 22 / 27

Block cipher based

The first construction for hash functions were all based on block ciphers
(in particular based on DES).
Advantages:
confidence of he community in a block cipher design
very compact implementation.
Problems:
how to construct hash function with a result larger than the block length
(not sufficient to obtain collision resistance)
small deviation from being ideal can result in devastating attacks on Hash
functions based block ciphers
12 secure construction → security proof in ideal model:

Matyas Meyer Oseas: Hi = φHi−1
(x)⊕ xi

Miyaguchi-Preneel: Hi = φHi−1
(x)⊕ xi ⊕ Hi−1

Davies Meyer: Hi = φxi (Hi−1)(x)⊕ Hi−1

A. Rimoldi (eRISCS) Hash function 12 September 2011 22 / 27

SPONGE: Panama, RadioGatun, Keccak,...

SMALL PERMUTATION:JH, Groestl

If the permutation π is an ideal function, then Sponge is indifferentiable
from a Random Oracle.

A. Rimoldi (eRISCS) Hash function 12 September 2011 23 / 27

Other primitive Hash function

Advantages:

sometimes is possible to prove security reductions
compact implementation

Disadvantages:

mathematical structure can be exploited
sometimes slow (exponentiation)
vulnerable to trapdoors

A. Rimoldi (eRISCS) Hash function 12 September 2011 24 / 27

SHA 3

A. Rimoldi (eRISCS) Hash function 12 September 2011 25 / 27

Candidate

Block cipher Permutation

Blake x
Groestl 2-permutation

JH x
Keccak Sponge
Skein x
BMW x

Cubehash Sponge
ECHO x
Fugue Sponge
Hamsi x
Luffa Sponge

Shabal Sponge
Shavite-3 Davies-Mayer

SIMD x

A. Rimoldi (eRISCS) Hash function 12 September 2011 26 / 27

Thank you for your attention!

A. Rimoldi (eRISCS) Hash function 12 September 2011 27 / 27

