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1.HYPERELLIPTIC CURVES
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Why are hyperelliptic curves important?

Hyperelliptic curves are suitable for cryptography:

They can be seen as an alternative to elliptic curves

We can associate a group structure to every hyperelliptic curve

We can use cryptographic protocols that rely on the difficulty
of solving discrete logarithm problem

however

the group operation is more difficult

We can’t use every hyperelliptic curve for our purpose, we
have to choose them paying attention to their genus, the
order of the group and their field of definition.
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Basic definitions

Definition (Hyperelliptic curve)

A hyperelliptic curve C over a finite field Fq of genus g is the set
of points in Fq × Fq such that:

C : y 2 + h(x)y = f (x)

where

1 h(x) ∈ Fq[x ] is a polynomial of degree less or equal than g

2 f (x) ∈ Fq[x ] is a polynomial of degree 2g + 1

3 C doesn’t have any singular point over Fq × Fq.

Nota

Elliptic curves are hyperelliptic curves of genus g = 1
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2.JACOBIAN GROUP
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Divisors

Given a curve C, we can define formal sums of points of C called
divisors:

D =
∑

mPP con mP ∈ Z, P ∈ C

Divisors form an additive abelian group Div(C):∑
mPP +

∑
nPP =

∑
(mP + nP)P

The sum
∑

mP is the degree of D. The set of degree 0 divisors is
a subgroup Div(C)0 of Div(C).
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Function field

The coordinate ring of C over Fq, denoted with Fq[C] is the
quotient ring

Fq[C] = Fq[x , y ]
/

(y 2 + h(x)y − f (x)) ,

where (y 2 + h(x)y − f (x)) denote the ideal generated by the
irreducible polynomial y 2 + h(x)y − f (x).

The function field is field of fractions of Fq[C]:

Fq(C) = Frac
(
Fq[x , y ]

/
(y 2 + h(x)y − f (x))

)
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Function field

Theorem

We can associate a divisor to a rational function φ over the
projective closure of C (formal sum of affine points of C together
with P∞ = [0 : 1 : 0])

A divisor of rational functions is always a degree 0 divisor, called
principal.
The set of principal divisors P is a subgroup of Div(C)0.
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Jacobian

Definition (Jacobian of C)

The Jacobian of C is the quotient group

J(C) = Div(C)0/P

Hence D1,D2 ∈ Div(C)0 are equivalent if D1 − D2 ∈ P.

In every equivalence class there’s only one divisor D, called reduced
divisor :

D =
∑

mPP − (
∑

mP)P∞

such that
∑

mP ≤ g .
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HCC

The Jacobian J(C) is an abelian group with the operation of sum
between divisors. So it can be used to implement Hyperelliptic
Curves Cryptosystems (HCC).

We can use traditional discrete logarithm cryptosystems, such as:

1 Diffie Hellman (key exchange)

2 ElGamal (encryption)

3 ElGamal (digital signature)
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3.SUM BETWEEN DIVISORS
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Mumford representation

We have to find another way to express divisors in order to be able
to implement the sum operation.

We can associate a couple of polynomials (a(x), b(x)) belonging to
Fq[x ] to every divisor, where:

deg(b) < deg(a) ≤ g

a monic

a|b2 + bh − f

The last condition implies that there’s only one element of J(C)
represented by this couple of polynomials:

D = MCD(div(a(x)), div(b(x)− y))

We will use the notation D = div(a, b).

S.Vanzetti An introduction to Hyperelliptic Cryptography



Curve iperellittiche Jacobian Sum HCDLP Choice of the curve

Cantor’s Algorithm

This algorithm consists of two parts:

Composition: Receives two divisors representation D1 = div(a1, b1)
and D2 = div(a2, b2) and computes the divisor D ∼ D1 + D2. (If
D1, D2 are reduced, then deg(D) ≤ 2g). The two most expensive
steps use the Extended Euclidean Algorithm to find the GCD of
two polynomials and the coefficients of Bezout’s Identity.
Reduction: Receives a divisor D = div(a, b) and computes a
reduced divisor D ′ ∼ D: the canonical representative belonging to
the same equivalence class of D.
Every time the reduction procedure is repeated, the degree of the
divisor D decreases by 2. So we will need at most dg2 e steps.

In this case deg(D) =
∑

mP .
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NUCOMP

Idea: We want to merge the steps of compositions and reduction:
this let us work with polynomials of smaller degree than before, so
the final reduction is less expensive (at the end of the main body
of the algorithm, if the divisor isn’t reduced, we will need at most
two more steps of reduction).

Result: the complexity of the two algorithms is asymptotically the
same, but heuristically NUCOMP in most cases needs less
operations.
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Scalar multiplication

Most of cryptographic protocols need to compute a multiple of a
divisor. The most natural thing to do is use the sum algorithm
repeatedly.

There are special versions of previous algorithms that improve the
speed of scalar multiplication:

1 with Cantor’s algorithm we get high degree divisors, so it’s
necessary to improve the reduction step

2 NUDPL: it’s a version of NUCOMP that works better for
duplication.

S.Vanzetti An introduction to Hyperelliptic Cryptography



Curve iperellittiche Jacobian Sum HCDLP Choice of the curve

What algorithm?

The choice depends on the genus of the curve:

g = 2 and g = 3 there are explicit formulas. If g = 2 they
need 25 multiplications and one inversion for the sum and 27
multiplications and one inversion for the duplication.

g < 10 Cantor

g ≥ 10 NUCOMP/NUDPL
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4.DISCRETE LOGARITHM
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Classic attacks

HCDLP is a generalization of ECDLP, every attack that works for
elliptic curves can be used in our case as well:

Pohlig-Hellman: solving the HCDLP is as difficult as solving
DLP in the biggest subgroup with prime order of the Jacobian.

MOV/Frey-Rück: reduces the HCDLP to a DLP over the
multiplicative group of a finite field.

Pollard’s ρ: O(qg/2) group operations to solve HCDLP in a
soubgroup of order q of the Jacobian.

Baby-Step-Giant-Step: O(qg/2) group operations, but needs
more memory than Pollard’s ρ
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Index Calculus

Idea: If we are able to compute the discrete logarithm for some
simple elements of the group, the we can compute the discrete
logarithm of those elements which can be written as a combination
of the first ones.

Suppose that we want to compute k s.t. b = ak , a, b ∈ G finite
abelian group, the algorithm consists of the following:

1 Choice of a factor base B = {g1, . . . , gn}: set of simple
elements of the set.

2 Search for relations between the factor base elements and the
index a.

3 If we have enough relations, we can compute the discrete
logarithm of g1, . . . , gn by linear algebra

4 If we can write a power of b as a combination of powers of
g1, . . . , gn, we can compute k .
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Index Calculus

Let F∗p the multiplicative group of the finite field Fp, generated by
a primitive root a. Given b ∈ F∗p, we want to find logab.

1 Fix a subset B = {p1, ..., pj} ⊆ F∗p of all the primes smaller
than a bound.

2 Find j + t relations between the elements of B such as:∏
j

p
ri,j
j ≡ ari modp obtaining

∏
j

aloga(pj )ri,j ≡ ari modp

which can be written as:∑
j

loga(pj)ri ,j ≡ ri mod(p − 1)
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Index Calculus

3 Compute the discrete logarithm loga(p1), . . . , loga(pj) of the
primes in B solving the system:

∑
j loga(pj)r1,j ≡ r1 mod(p − 1)

...∑
j loga(pj)rj+t,j ≡ rj+t mod(p − 1)

4 If b ∈ G is B−smooth, there exist k, ki ∈ N such that

bk = pk1
1 . . . p

kj
j , we can find the logarithm of b from:

k · loga(b) = k1 · loga(p1) + · · ·+ kj · loga(pj)
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Index Calculus

Observations:

The first 3 steps doesn’t depend on b, so we can use this part
of precomputation even to compute discrete logarithm of
other elements of the group.

The algorithm can be modified, including b in the search for
relations, so we can compute k without finding
logag1, . . . , logagn.

Index Calculus is a probabilistic method. If b isn’t B-smooth
we can’t deduce logab from logag1, . . . , logagn.
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Index Calculus v. Pollard’s rho

Index-calulus has been adapted to the case of hyperelliptic curves,
but we have an additive group and we have to find relations
between divisors.

Efficiency will depend on the genus an the choice of the factor
base. In the table there’s a comparison between the Gaudry/Enge
version of the Index Calculus and Pollard’s rho. (q is the group
order)

g 2 3 4 5 6

rho q q3/2 q2 q5/2 q3

Gaudry q4/3 q3/2 q8/5 q5/3 q12/7

If g = 2 Pollard’s ρ is better. We have to use curves of genus
g ≤ 2 or curves with a Jacobian large enough to make Index
Calculus inefficient (longer keys).
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Jacobian order

We need to know the Jacobian order both to implement
cryptographic systems and to solve the HCDLP with previous
methods

Let us consider an hyperelliptic curve C of genus g defined over
the finite field Fq, with q power of a prime. The Jacobian order
would lie in the Hasse-Weil’s inteval:

(
√

qk − 1)2g ≤ #J(Fqk ) ≤ (
√

qk + 1)2g
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Jacobian order

The Jacobian order can be computed using the Zeta function
ZC (t).

Let C be defined over Fq, let Mn be the number of points
Fqn -rational over C .

The Zeta function C is the power series

ZC (t) = exp

∑
r≥1

Mr
tr

r



S.Vanzetti An introduction to Hyperelliptic Cryptography



Curve iperellittiche Jacobian Sum HCDLP Choice of the curve

Jacobian order

The function ZC (t) can be written as:

ZC (t) =
P(t)

(1− t)(1− qt)

where P(t) is a polynomial of degree 2g with integer coefficients
that can be factored as:

P(t) =

g∏
i=1

(1− αi t)(1− αi t).

The number of points in the Jacobian J(Fqn) will be:

#J(Fqn) =

g∏
i=1

|1− αn
i |2
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5.SCELTA DELLA CURVA
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Choice of the curve

Some selection criteria:

1 Curves over a field K of characteristic 2 (sum can be
computed efficiently)

2 #JC divisible by a big prime r (Pohlig-Hellman, Pollard’s ρ).

3 If we have a curve over Fq, Frey-Rück’s method let us create
an isomorphism between J(C ) and the multiplicative group of
Fqk , so we have to check that r doesn’t divide qk − 1 for
these k such that the DLP can be solved easily over Fqk .

4 If g = 2 the Index Calculus method is less useful than others
and the Jacobian order can be computed easier.
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Choice of the curve

Instead of considering a generic hyperelliptic curve and calculate
the order of the Jacobian to verify whether it is suitable or not, we
can do the opposite.

There are methods to choose a ′′secure′′ Jacobian and find later a
curve with the desired Jacobian order.

Nota

If g = 2 these methods are quite efficient, they become more and
more difficult with genus increasing.
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Grazie per l’attenzione!
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