La crittografia a curve elittiche e applicazioni

Prof. Massimiliano Sala MINICORSI 2011. Crittografia a chiave pubblica: oltre RSA

Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

24 marzo 2011

Attacchi

1. LE CURVE ELLITTICHE

... Cosa sono?

Equazione di Weierstrass:

$$F(x, y, z) = y^2z + a_1xyz + a_3yz^2 - x^3 - a_2x^2z - a_4xz^2 - a_6z^3 = 0$$

dove

- K campo
 a₁,..., a₆, x, y, z ∈ K

Curva Ellittica $\mathbf{E}/\mathbb{K}=$ Insieme delle soluzioni nel piano proiettivo $\mathbb{P}^2(\mathbb{K})$ di una equazione di Weierstrass

Prendiamo $\mathbf{E}/\mathbb{K} = \mathbf{E}$.

Se \mathbb{K} è finito, allora **E** ha un numero finito di punti, che indichiamo con N.

sostituzione
$$(x, y, z) \mapsto (\frac{x}{z}, \frac{y}{z}, 1)$$

 $\implies f(x, y) = y^2 + a_1 xy + a_3 y - x^3 - a_2 x^2 - a_4 x - a_6 = 0$

• CASO 2: z = 0

$$x^3 = 0$$

- \implies Soluzioni: tutti i punti dell'insieme (0, y, 0) al variare di y, con $y \neq 0$
- \implies Unica soluzione: punto all'infinito ($\mathcal{O} = (0:1:0)$)

Dato un campo $\mathbb{K}\dots$

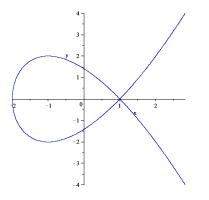
Curva Ellittica E:

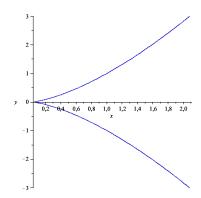
insieme delle soluzioni di
$$f(x,y) = 0$$

+
punto all'infinito \mathcal{O}

Attacchi

Evitare curve in cui la tangente a qualche punto non è ben definita





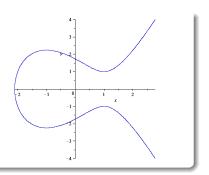
Un punto P = (x, y, z) si dice **punto singolare** se

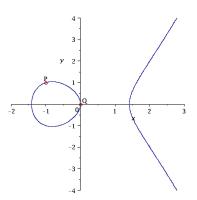
$$\frac{\partial F}{\partial x}(P) = \frac{\partial F}{\partial y}(P) = \frac{\partial F}{\partial z}(P) = 0.$$

CURVA NON SINGOLARE

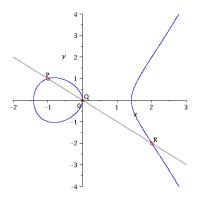
=

curva senza punti singolari

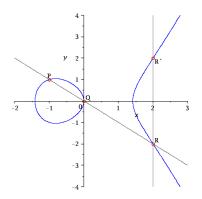




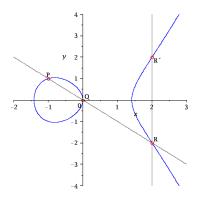
- E curva ellittica;
- O punto all'infinito su E;
- \bullet $P, Q \in \mathbf{E}$;



- **E** curva ellittica;
- O punto all'infinito su E;
- \bullet $P, Q \in \mathbf{E}$;
- L retta che congiunge P con Q;
- R terzo punto di intersezione di E con L;

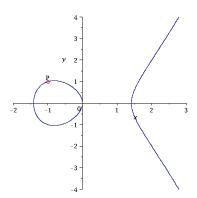


- **E** curva ellittica;
- O punto all'infinito su E;
- \bullet $P, Q \in \mathbf{E}$;
- L retta che congiunge P con Q;
- R terzo punto di intersezione di E con L;
- L' retta passante per R ed il punto all' infinito O;
- R' terzo punto di intersezione tra E ed L';



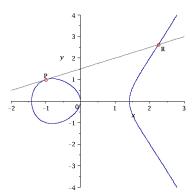
- E curva ellittica;
- O punto all'infinito su E;
- \bullet $P, Q \in \mathbf{E}$;
- L retta che congiunge P con Q;
- R terzo punto di intersezione di E con L;
- L' retta passante per R ed il punto all' infinito O;
- R' terzo punto di intersezione tra E ed L';
- \implies R' è la somma $P \oplus Q$.

RADDOPPIO ([2]P)



Se P = Q...

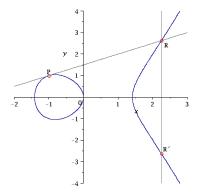
RADDOPPIO ([2]P)



Se
$$P = Q$$
...

- L = tangente alla curva in P
- R punto di intersezione di E con L;

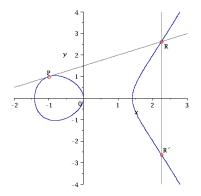
RADDOPPIO ([2]P)



Se
$$P = Q$$
...

- L = tangente alla curva in P
- R punto di intersezione di E con L;
- L' retta passante per R e il punto all' infinito O;
- R' terzo punto di intersezione tra E ed L'

RADDOPPIO ([2]P)



Se
$$P = Q$$
...

- L = tangente alla curva in P
- R punto di intersezione di E con L;
- L' retta passante per R e il punto all' infinito O;
- R' terzo punto di intersezione tra E ed L'
- \implies R' è il raddoppio [2]P.

Teorema

Una curva ellittica \mathbf{E} non singolare è un gruppo abeliano rispetto all'operazione \oplus , con elemento neutro \mathcal{O} .

⇒ Gruppo usato per i sistemi ECC (Elliptical Curve Cryptography)

Moltiplicazione scalare

• $k \in \mathbb{N}$:

$$[k]$$
 : $\mathbf{E} \to \mathbf{E}$
 $P \to [k]P = \underbrace{P \oplus P \oplus \ldots \oplus P}_{k}$

- k = 0: $[0]P = \mathcal{O}$
- k < 0: [k]P = [-k](-P)

Ordine di un punto/Ordine della curva

- Ordine di $P \in \mathbf{E}$ il più piccolo $m \in \mathbb{Z}$, m > 0, se esiste, t.c. $[m]P = \mathcal{O}$ Se tale m non esiste $\implies P$ ha ordine infinito
- Ordine della curva \mathbf{E}/\mathbb{F}_p numero di punti razionali su \mathbb{F}_p che appartengono ad \mathbf{E}

Due categorie di curve

Punto di n-torsione

$$P \in \mathbf{E}$$
 t.c. $[n]P = \mathcal{O}$ (con $n \in \mathbb{Z}$, $n > 0$)

$$\implies$$
 Kernel di $[n]$: $E[n] = \{P \in \mathbf{E}/\overline{\mathbb{K}} \mid [n]P = \mathcal{O}\}$

E curva ellittica, $char(\mathbb{K}) = p$

- - **⇒** CURVA SUPERSINGOLARE
- 2 altrimenti \implies CURVA ORDINARIA

2. LA CRITTOGRAFIA A CURVE ELLITTICHE (ECC)

Due tipi di Cifrari a Chiave Pubblica

Ricordiamo che ci sono cifrari a chiave pubblica che servono per:

- per scambiare un messaggio
- per scambiare o negoziare una chiave segreta, da usare poi in altri crittosistemi

Il problema del logaritmo discreto su curva ellittica (ECDLP)

Dati...

- $\mathbf{E} = \mathbf{E}/\mathbb{F}_a$
- $P \in \mathbf{E}$ di ordine n
- Q = [k]P per qualche k

trovare l'intero
$$k \in \{0, \dots, n-1\}$$
 t.c. $Q = [k]P$

$$\implies k = \log_P Q$$
(LOGARITMO DISCRETO DI Q IN BASE P)

$$\underline{\text{Informazioni pubbliche}}: \begin{cases} \mathbf{E} \\ P \in \mathbf{E} \text{ (base), di ordine } n \end{cases}$$

Curve Ellittiche

Attacchi

$$\implies$$
 Chiave segreta: $[ab]P = [a]([b]P) = [b]([a]P)$

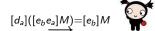
Massey-Omura su curva ellittica

Sia M il messaggio che Alice vuole trasmettere a Bob.

$$\frac{\text{Informazioni pubbliche}}{N}: \begin{cases} \mathbf{E} \\ N \end{cases}$$

 $\dots e \in \{1, \dots, N\}$, primo con N, d t.c. $d \equiv e^{-1} (mod N))\dots$

$$[e_b]([e_a]\underline{M}) = [e_b e_a]\underline{M}$$



$$[d_b]([e_b]M)=M$$

3. ATTACCHI e SICUREZZA

Attacchi

Attacchi possibili all'ECDLP

Curva generica:

- Silver-Pohlig-Hellman
- Baby step-Giant step
- Pollard

Curva speciale:

- MOV
- curve anomale

- A, B punti di una curva ellittica **E** t.c. $\lceil k \rceil A = B$
- $N := |\mathbf{E}| = \prod_{i=1}^t q_i^{e_i}$ con q_i primi e e_i interi positivi $(\forall i = 1, \dots, t)$

Idea: trovare $k \pmod{q_i^{e_i}}$ e utilizzare il Teorema Cinese dei Resti per ottenere $k \pmod{N}$.

CONTROMISURA:

Selezionare N primo o con un divisore primo molto grande

COSTO:

Il tempo richiesto dall'algoritmo è $\sqrt{q_i}$. Dove q_i è il più grande fattore di N.

Il metodo Baby step-Giant step

• A, B punti di una curva ellittica **E** t.c. [k]A = B

Idea:
$$k = \lceil \sqrt{N} \rceil c + d$$
 con $0 \le c, d < \lceil \sqrt{N} \rceil$.

 \implies provare i valori di k passando in rassegna i valori di c e d

CONTROMISURA:

Già con valori non troppo elevati di N, richiede troppa memoria $N \ge 2^{120} \implies \text{Impraticabile}$

COSTO:

Il tempo richiesto dall'algoritmo è \sqrt{N} . Però richiede una occupazione di memoria di $O(\sqrt{N})$.

Il metodo ρ di Pollard

• A, B punti di una curva ellittica **E** t.c. [k]A = B

Idea: "Paradosso del Compleanno"

(scegliendo a caso degli elementi da un gruppo G di ordine N, è sufficiente selezionarne $\mathcal{O}(\sqrt{N})$ per assicurarsi una probabilità del 50% di avere *collisione*)

CONTROMISURA:

Selezionare
$$N \ge 2^{160}$$

COSTO:

La complessità di questo algoritmo è : $\sqrt{N} = N^{\frac{1}{2}} = 2^{\frac{1}{2} \log N}$.

Scegliere la curva, 1

Come possiamo scegliere i parametri di una curva generica ellitica **E** per difendersi dagli attacchi generici?

Attacco	Precauzione
Pohlig - Hellman	(i) N grande
Pollard $ ho$	(ii) N deve avere un fattore r tale che
Baby step Giant step	\sqrt{r} risulti essere un numero
	intrattabile di operazioni
	(iii) P deve avere ordine r
calcolo DLP	no curve supersingolari

Il metodo Menezes, Okamoto, Vanstone (MOV)

- P,Q punti di una curva ellittica \mathbf{E}/\mathbb{F}_q t.c. Q=[k]P
- n ordine di P (t.c. MCD(n, q) = 1)

Idea: ridurre il problema del logaritmo discreto sulle curve ellittiche ad un problema di logaritmo discreto nel gruppo moltiplicativo di un campo più grande

CONTROMISURA:

Verificare che n non divida q^k-1 per tutti i valori $1 \le k \le 100$ \implies Esclusione delle curve supersingolari

COSTO:

Sia $E[n] \subseteq \mathbf{F}_{q^m}$, allora il costo di quest'algoritmo è subesponenziale in m, dove $m \ge \log n$.

Curve Anomale

Una curva ellittica **E** è facilmente attaccabile:

- se la curva è isomorfa a $(\mathbb{F}_q, +)$
- ② in generale se c'è un isomorfismo tra ${\bf E}$ e una somma diretta di ${\mathbb Z}_p$
- se c'è un isomorfismo tra E e lo Jacobiano di una curva iperellittica in cui è facile il calcolo del DLP

Attacchi

Scegliere la curva, 2

Come possiamo scegliere i parametri di una curva ellitica ${\bf E}$ per difendersi dagli attacchi speciali?

Attacco	Precauzione
Isomorfismo a $(\mathbb{F}_q,+)$	il fattore più grande
	di N deve essere diverso da q
MOV	$q^k \not\equiv 1 \mod r$ per $0 < k < 100$
Isomorfismo allo Jacobiano	m primo o se m è composto
	bisogna scegliere un'opportuna curva

Scegliere la curva, 3

Possiamo scegliere i parametri i modo tale da migliorare l'efficienza.

Situazione	Migliorare l'efficienza
Campi primi \mathbb{F}_p	p primo, lunghezza in bit $=$
·	multiplo della lunghezza word.
	p primo di Mersenne o <i>simile</i>
Campi binari \mathbb{F}_{2^m}	m primo o m composto con
	opportuna curva
OptimalExtensionField \mathbb{F}_{p^m}	Sconsigliati
Coefficienti	a = -3 o Curve con Endomorfismi
	Efficientemente Calcolabili

Curve Ellittiche

Nelle implementazioni questo talvolta manca.

Attacchi

Attacchi

4. Accenno ad applicazioni di ECC

- Incremento dell'uso dell'ECC in diversi prodotti
- Incorporazione dell'ECDSA in svariati standard di sicurezza di governi e grandi istituzioni di ricerca

APPLICAZIONI COMMERCIALI

- crittografia CERTICOM per reti di sensori e sicurezza Voip
- comunicazioni Wireless con ECC (Texas Instruments)
- Standard industriali: IEEE, IETF, VPNC, ASC X9
- ..

Cosa sono le smart cards?

Piccoli dispositivi della forma e della grandezza di una carta di credito, ma molto flessibili...

Usi più frequenti:

- carte di credito
- tickets elettronici
- carte d'identità

smart = sveglio, intelligente

microchip integrato

Attacchi

Sicurezza e gestione delle chiavi...

Generatore di chiavi interno ⇒ Eseguire crittazione e decrittazione, senza "far uscire" la chiave segreta

... chiave generata, usata e distrutta senza alcuna possibilità di essere letta dall'esterno

⇒ strumento di firma digitale

Prototipo di smart card basato su ECC

I. Z. Berta e Z. Á. Mann, 2002:

implementazione di un prototipo ECC basato sulla tecnologia Java Card e in grado di funzionare sulle smart cards. . .

prodotto software \implies potrebbe non adempire alle prestazioni richieste per l'uso commerciale

Obiettivo:

dimostrare che un algoritmo complesso come l'ECC può essere implementato sulle "deboli" smart cards

Architettura delle Smart Cards

La struttura del microchip integrato è simile a quella di un computer, essendo composta da:

- CPU
- ROM, EEPROM (memoria nonvolatile)
- Circuito di Sicurezza
- Periferiche I/O

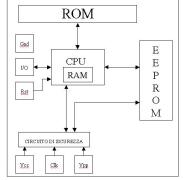


Figura 4 : Struttura Hardware

Altre applicazioni...

Internet

commercio elettronico: uso di smart cards ed ECC per transazioni sicure con carte di credito via web

PDA (Personal Digital Assistant)

potenza computazionale più elevata rispetto agli altri dispositivi mobili + larghezza di banda limitata

PC

proteggere dati e crittare messaggi e-mail o istantanei con l'uso dell'ECC

