Lecture 5 DIFFUSION TENSOR IMAGING

Diffusion Tensor Imaging (DTI)

Single Tensor estimation

Estimation of direction is severely affected in the presence of noise*

*X. Ma, Y. Kadah, S. LaConte, and X. Hu, Magnetic Resonance in Medicine, 2004.

Source of noise in diffusion MRI

Statistical Noise

- Magnetic Filed unhomogeneity
- Eddy currents
- Thermal Noise
- Background signals caused by precessing tissue magnetization.

Systematic Noise

- from a number of patient motion, such as respiration, vascular, and CSF pulsations;
- receiver-coil or gradient-coil motion; aliasing; and data truncation (Gibbs) artifacts

DTI: Anisotropy Maps

Grayscale fractional anisotropy map: Lighter shade indicates greater anisotropy

 Color coded directional anisotropy map Colors indicates diffusivity along the main coordinate axis (x,y,z) (Green = anterior-posterior; red = right-left; blue= craniocaudal)

Different Gradient Directions

6 Directions 12 Directions 30 Directions

Fiber track (Additional)

DTI Sequence

- Repeat the DWI sequence with gradients applied in a number of different directions
- From the contribution of all the different directions we can calculate the direction of diffusion as well as the relative rate (ADC)
- Areas with restricted diffusion will have a directional bias which is used to determine the direction of diffusion

DTI-Based Connectivity Mapping

DTI-Based Connectivity Mapping

- Nerve fibers represent cylindrical-shaped physical spaces with membrane acting like a barrier
 - DT shows diffusion preference along axon
- Measuring the diffusing anisotropy, we can estimate the dominant direction of the nerve bundle passing through each voxel

*X. Ma, Y. Kadah, S. LaConte, and X. Hu, Magnetic Resonance in Medicine, 2004.

DTI-Based Connectivity Mapping*

- Line Propagation Algorithms.
- Global energy Minimization
 - Fast Marching Technique
 - Simulated annealing approach

*S.. Mori et. al, NMR IN BIOMEDICINE, 2002.

Fiber Track Reconstruction

HBWL

Limitations*

- Inaccuracy of Single Tensor Estimation due to
 - Intravoxel Orientational Heterogeneity (IVOH).
 - Contribution from multiple tensors.
- Limited signal to noise Ratio.
- There may not be a single predominant direction of water diffusion.
- Afferent and efferent pathways of axonal fiber tracts cannot be judged.

*S.. Mori et. al, NMR IN BIOMEDICINE, 2002.

Problem Statement

- Partial voluming is common in practice
- Attenuation due to multi-component diffusion when applying a gradient defined by the diffusion direction is given by,

$$E(\vec{x}) = \sum_{i \in I} \alpha_i \cdot \exp\left(-b \cdot \vec{x}^T \cdot D_i \cdot \vec{x}\right)$$

- It is required to estimate the component tensor and their partial volume ratios
 - I3 unknown for a 2-component model without loss of generality.
 - Nonlinear equations unlike 1-component case

Orientation Distribution function

Research in DTI

- To develop Image denoising Algorithms diffusion Tensor MRI.
- To develop a technique that would allow multiple diffusion components to be computed within a given voxel.
- To predict the behavior of this technique under different conditions of SNR.
- Improve diffusion orientation distribution function.
- Probabilistic fiber tracking that satisfies the anatomical conditions

Tensor Model of Isotropy

Isotropic

Anisotropic

DTI images

Structural Connectivity: Corpus Callosum Tracts

Talaraic Atlas

TBSS - Tract-Based Spatial Statistics

- TBSS is a FSL approach to conduct between group comparisons of DTI data.
- projects data onto group-mean tract skeleton, allowing voxelwise analysis
- addresses alignment problems unsolved by nonlinear registration
- Overview www.fmrib.ox.ac.uk/fsl/tbss/index.html
- Tutorial www.fmrib.ox.ac.uk/fslcourse/lectures/ practicals/fdt/index.htm

Tractography

 Programs like medInria allow us to measure integrity of connections between different regions.

TBSS

Deterministic vs. probabilistic tractography

Data analysis

- Pre-process images to reduce distortions
 - Either register distorted DW images to an undistorted (non-DW) image
 - Or use information on distortions from separate scans (field map, residual gradients)
- Fit a diffusion model at every voxel
 DTI, DSI, Q-ball, ...
- Do tractography to reconstruct pathways and/or
- Compute measures of anisotropy/diffusivity and compare them between populations
 - Voxel-based, ROI-based, or tract-based statistical analysis

Tractography studies

Exploratory tractography:

- Example: Show me all regions that the motor cortex is connected to.
- Seed region can be anatomically defined (motor cortex) or functionally defined (region activated in an fMRI finger-tapping task)

Tractography of known pathways:

- Example: *Show me the corticospinal tract.*
- Use prior anatomical knowledge of the pathway's terminations and trajectory (connects motor cortex and brainstem through capsule)

Tractography takes Get whole-brain tract solutions, edit manually

Use knowledge of anatomy to isolate specific pathways

 \odot

Tractography methods

- Use local diffusion orientation at each voxel to determine pathway between distant brain regions
- Local orientation comes from diffusion model fit (tensor, ball-and-stick, etc.)

- Deterministic vs. probabilistic tractography:
 - Deterministic assumes a single orientation at each voxel
 - Probabilistic assumes a distribution of orientations
- Local vs. global tractography:
 - Local fits the pathway to the data one step at a time
 - Global fits the entire pathway at once

Deterministic vs. probabilistic Deterministic methods give you an estimate of model

 Deterministic methods give you an estimate of model parameters

• **Probabilistic methods** give you the uncertainty (probability distribution) of the estimate

Deterministic vs. probabilistic

Sample 1 Sample 2 ...

Deterministic tractography: One streamline per seed voxel Probabilistic tractography: Multiple streamline samples per seed voxel (drawn from probability distribution)

Deterministic vs. probabilistic

Deterministic tractography: One streamline per seed voxel

Probabilistic tractography: A probability distribution (sum of all streamline samples from all seed voxels)

Local vs. <u>global</u>

Local tractography:

Fits pathway step-by-step, using local diffusion orientation at each step

Global tractography:

Fits the entire pathway, using diffusion orientation at all voxels along pathway length

Local tractography Best suited for exploratory

study of connections

- All connections from a seed region, not constrained to a specific target region
- How do we isolate a specific • white-matter pathway?
 - Thresholding?
 - Intermediate masks?
- Non-dominant connections • are hard to reconstruct
- Results are not symmetric between "seed" and "target" regions •
- Sensitive to areas of high local uncertainty in orientation (e.g., pathaway crossings), errors propagate from those areas

Global tractography Hest swited for reconstruction of known white-matter pathways

- Constrained to connection of two specific end regions
- Not sensitive to areas of high local uncertainty in orientation, integrates over entire pathway
- Symmetric between "seed" and "target" regions
- Need to search through a large solution space of all possible connections between two regions:
 - Computationally expensive
 - Sensitive to initialization

TRACU

T.A

- TRActs Constrained by UnderLying Anatomy
- Global probabilistic tractography with prior information on tract anatomy from training subjects
- Learn from training subjects which anatomical regions each pathway typically goes through/next to
- Constrain pathway in new subject based on this prior anatomical knowledge
- Reconstruct 18 major white-matter pathways
 - No manual intervention in new subjects
 - Robustness with respect to pathway initialization
 - Anatomically plausible solutions
- Ad-hoc anatomical constraints are often used by other methods: constraints on path bending angle or length, WM masks, ...

White-matter pathway Labeling based on an established protocol [Wakana '07]

- \odot
- Corticospinal tract \odot
- Inferior longitudinal fasciculus (\mathbf{x})
- Uncinate fasciculus
- Corpus callosum (\mathfrak{A})
 - Forceps major (\mathbf{x})
 - Forceps minor 8
- Anterior thalamic radiation 3
- Cingulum 8
 - Cingulate (supracallosal) .
 - Angular (infracallosal) (\mathfrak{G})
- Superior longitudinal fasciculus 8
 - Parietal 8
 - Temporal (\mathfrak{B})

0

Intra/inter-rater errors: 1mm/ 2mm on average

White-matter pathway atlas Manual labeling of paths in training subjects performed in Trackvis

•

Anatomical segmentation maps of training subjects from FreeSurfer •

Automated pathway Have image date Constructions probable path F

- Determine the most probable path based on:
 - What the images tell us about the path
 - What we already know about the path
- Estimate posterior probability of path F given images Y

 $p(\mathbf{F} \mid \mathbf{Y}) / p(\mathbf{Y} \mid \mathbf{F}) \notin p(\mathbf{F})$

- p(Y | F): Uncertainty due to imaging noise
 - Fit of pathway orientation to ball-and-stick model parameters
- p(F): Uncertainty due to anatomical variability Fit of pathway to prior anatomical knowledge from training set

Tract-based

measures Reconstruction outputs:

- Posterior probability distribution of pathway given data (3D)
- Maximum a posteriori pathway (1D)
- Tract-based diffusion measures (FA, MD, RD, AD, etc):
 - Average over pathway distribution
 - Weighted average over pathway distribution
 - Average over MAP pathway
 - As a function of arc length along MAP pathway

Ball-and-stick model fit Behrens et al

Behrens *et al.*, MRM '03 Jbabdi *et al.*, NeuroImage '07

Multiple diffusion compartments in each voxel:

- Anisotropic compartments that model fibers (1, 2, ...)
- O One isotropic compartment that models everything left over (0)
- FSL/bedpostX infers from the data:
 - Orientation angles of anisotropic compartments
 - Solumes of all compartments
 - Overall diffusivity in the voxel

Multiple fibers only if they are supported by data

Schizophrenia Statutey of Dr. Randy Gollub and MIND Institute

Pathway distributions reconstructed automatically in a SZ patient using 30 healthy training subjects

Schizophrenia

State Loutev of Dr. Randy Gollub and MIND Institute

- Reconstruct pathways in 34 SZ patients and 23 healthy controls with
 - No training subjects
 - 30 healthy training subjects
 - 15 healthy / 15 SZ training subjects
 - 30 SZ training subjects
- Evaluate distance b/w automatically reconstructed and manually labeled pathways

Beware of

Data Curtost If D. Nuncy Kanwisher and Ellison autism study

- 50 children with autism spectrum disorder (ASD) vs. 50 typically developing children (TD)
- Some children scanned twice, so scans can be matched for motion
 Matched for age, IQ
 Matched for age, IQ & motion

[Yendiki et al, OHBM 2013]

Jsag e

- All processing options are defined in a configuration file, dmrirc •
- Step 1: Pre-processing (distortion compensation, registration, etc.) • trac-all -prep -c dmrirc
- Step 2: Fitting of ball-and-stick model (FSL's bedpostx) • trac-all -bedp -c dmrirc
- Step 3: Reconstruct pathways • trac-all -path -c dmrirc

New development: Reconstruct a subject 's pathways simultaneously in all time points

- Ensures better spatial correspondence (avoid getting different parts of
 - the pathway in different time points due to degeneration)

Improved test-retest reliability

Longitudinal

- Define baselist in config file
- Paths saved under dpathlong/

Cross-sectional

- Do not define baselist
- Paths saved under dpath/

ullet

Future development: A better Need high SNR, high angular resolution, tolerable scan time

- •
- Combine advances in hardware and sequences: \bullet
 - *Connectom* scanner with 8 times stronger gradients
 - Accelerated simultaneous multi-slice acquisition (Setsompop '11)

[Images from Setsompop '12]

3x-slice DSI (15 min)

- Goal: ٠
 - Create a gold standard atlas from this data
 - Use it to do tractography in *conventional data*

GFA

Tutori al

How to run TRACULA and view outputs:

- Set up configuration file (input images, gradient directions, b-values, registration method, etc.)
- "Run" trac-all (*don't actually run it!*)
- Look at pathways in freeview
- Look at FA, MD, and other stats for each pathway

subjectname Diff001 pathwavname lh.cst Count 1000 Volume 327 Len Min 35 Len Max 70 Len Avg 53.119 Len Center 48 AD Avg 0.00106102 AD Avg Weight 0.00108794 AD Avg Center 0.00105527 RD Avg 0.000438781 RD Avg Weight 0.000430744 RD Avg Center 0.000441464 MD Avg 0.000646195 MD Avg Weight 0.000649809 MD Avg Center 0.000646067 FA Avg 0.519271 FA Avg Weight 0.539241 FA Avg Center 0.511358

# subjectname Diff001				
<pre># pathwayname lh.cst</pre>				
#				
<pre># pathway start</pre>				
xy	yz	AD	RD MD FA	
66	63	13	0.00103657	0.000574918 0.000728804 0.374774
66	63	14	0.00100453	0.000480365 0.000655088 0.478045
67	64	15	0.00081615	4 0.000359865 0.000511961 0.547635
67	64	16	0.00094662	5 0.000421327 0.000596426 0.521222
68	64	17	0.00096714	2 0.000305692 0.000526175 0.646745
68	64	18	0.00114626	0.000333594 0.000604484 0.658591
69	65	19	0.00152806	0.000740932 0.00100331 0.426333
69	65	20	0.00126399	0.000470638 0.000735089 0.57121
69	65	21	0.00140243	0.000482392 0.000789071 0.611696
70	65	21	0.00143949	0.000480912 0.000800438 0.618516
70	65	22	0.00116007	0.000156374 0.000490939 0.858895
70	66	23	0.00138642	0.000415134 0.000738896 0.650657
71	66	24	0.00134187	0.000385197 0.000704089 0.678151
71	66	25	0.00108983	0.000289931 0.000556565 0.729769
71	66	26	0.00111074	0.000307493 0.000575241 0.693343
72	66	27	0.00117242	0.000398032 0.00065616 0.619191
72	66	28	0.00118738	0.000448541 0.000694819 0.568624

Diffusion direction visualization

Image brightness by anisotropy indices (FA, 1-2 difference, 2-3 difference)

<u>Orientation</u> of the eigenvectors was represented by use of RGB color coding.

T,

Intera 3.0T: Diffusion Tensor Imaging

SENSE-DTI High res FA-maps: (256x256), 4mm

SENSE fact.= 2.5

Directions: red: RL green: AP blue: FH

HBWL

Fiber Tracking

Corticospinal Tract Inferior Cerebellar Peduncle Superior Cerebellar Peduncle Anterior Thalamic Radiation Superior Longitudinal Fasciculus

Comparison with anatomical preparation

S. Mori, B. Stieltjes, R. Xue, M. Solaiyappan, W. Kaufmann & P. van Zijl, F.M. Kirby research center, Johns Hopkins University, Baltimore.

HBWL

Diffusion tensor imaging tractography

Applications

Schemia Fiber direction Demyelinations Tumor delimitation Others

