
Filters
NOTA: Questa parte e’ ancora allo stato di bozza, ma e’ sufficiente ai fini della preparazione

dell’esame.

Symbology. • indicates important results. ∗ indicates complements.

[Ex] means that the proof is left as exercise. [] means that the proof is missing.

1 Linear Systems

In this chapter we outline some elements of the theory of linear systems, in an effort to combine

a mathematical approach with the point of view and the language of signal processing and control

theory. These disciplines have been extensively developed by engineers, and in addressing them the

mathematician is called to formulate several notions and results in a rigorous form.

First, we shall introduce some basic concepts like time-invariance, causality, stability, and so

on. We shall relate these properties to the response of the system to the unit impulse, and shall

reformulate the action of time-invariant systems as the convolution between the input function and

the impulse response. Via Fourier or Laplace transform, we shall also transform the input-output

relation from the space of time to that of frequency. 1 We shall see that systems can be arranged

in series, in parallel, and in retroaction (or feedback).

1.1 Signals and systems

The notion of system occurs in many scientific and technical disciplines: physics, chemistry,

biology, economics, control theory, engineering of telecommunications, electrical engineering, and

so on. For our aims, we define a system as a unitary whole, that can exchange information with

the exterior. We shall be concerned with transmission systems, in which an input of information

produces an output of information. Such a system will be regarded as a black box: by this we mean

that attention will be paid just to the input and output, without considering the internal structure

of the system (which will appear black to our eyes).

We can define a signal as a function of time that represents the evolution of a physical quantity.

Examples include: voltage and current of an electric circuit in electromagnetism, tension and

deformation of a string in continuum mechanics, air pressure and sound in acoustics, and so on. In

this context the system is represented by an operator that transforms an input signal to an output

signal. For instance, in a control system the input is a control (that is, a quantity that we can

control), and the output is an observable (that is, a quantity that we can observe). Here we shall

just deal with complex-valued signals and linear systems.

Let us consider a system that maps a time-dependent complex scalar input signal to a time-

dependent complex scalar output. 2 One distinguishes between discrete and analogical systems, in

which time is discrete or continuous, respectively, and is represented by n ∈ Z or t ∈ R. Moreover,

there are digital systems, in which input and output are discrete (quantized) variables. One also

1 As we did above, when we redefined the Fourier transform in Section XXX, by frequency we refer to the number
of cycles in the unit time. On the other hand, when dealing with the Laplace transform, by frequency we shall refer
to the complex frequency.

2 In the engineering literature this is called a SISO (single input and single output) system. We shall not deal
with MIMO (multiple input and multiple output) systems. In this second case the scalar transfer function (see ahead)
is replaced by a matrix-valued transfer function, and the analysis is similar to the present one. (BIBO is a different
animal that we shall encounter ahead...)
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distinguishes between deterministic and stochastic systems. In this presentation we shall just deal

with deterministic analogical systems.

We shall constrain input and output signals to appropriate topological linear spaces 3 of complex-

valued functions of time, with a space Φ of admissible inputs and a space Ψ of outputs. 4 We shall

then associate each system with a linear operator L : Φ→ Ψ : f 7→ g, which we shall often identify

with the system itself. 5 The space Φ may include Lp(R) for some p ∈ [1,∞], C0
b (R), and also

Dirac masses. In several cases we can assume Ψ = D′(R),

Examples. Here are some linear systems that are studied in physics and engineering.

(i) Amplifiers, that are represented by the state equation L(f) = Af , with amplification factor

A > 0. These systems are called amplifiers in strict sense if A > 1, attenuators if A < 1.

(ii) Delayed systems, with state equation

L(f) = f(· − a) =: fa for some fixed a > 0. (1.1)

(iii) Derivators, that are characterized by L(f) = f ′ (the time derivative).

(iv) Integrators, that are characterized by [L(f)](t) =
∫ t
−∞ f(s) ds.

(v) RLC circuits. These are models of electrical systems, and are constructed by combining either

in series or in parallel (see ahead) elementary linear constituents: resistors, inductors, condensers 6

and an electrical generator, which typically generates an alternating-current. If these elements are

connected in series, the system is characterized by an ODE of the form

Ly′′(t) +Ry′(t) +
y(t)

C
= f(t). (1.2)

Here by f = f(t) we denote an applied tension (the input), by y = y(t) the electric current flowing

in the system (the output), by L the inductance, by R the resistance, by C the capacitance. This

is known as the equation of the damped driven harmonic oscillator (the basic equation of the

harmonic oscillator reads ay′′ + y = 0, with a > 0). This model is ubiquitous in physics, and has a

huge number of applications.

(vi) Rheological models. These are lumped models 7 that are used to describe the mechanical

behaviour of continuous materials. They represent lumped mechanical systems that consist in a

mass, a spring and a dashpot (or damper, i.e., a viscous element). The corresponding state equation

is an ODE of the form (1.2):

my′′(t) + νy′(t) + ky(t) = f(t). (1.3)

Here by f = f(t) we denote an applied force (the input), by y = y(t) the displacement (the output),

by m the mass, by ν the viscosity, by k the compliance of the spring.

3 This means that they are linear spaces as well as topological spaces, and that the linear operations (namely sum
and multiplication by a scalar) are continuous with respect to that topology. This includes all function spaces used
in mathematics.

4 As above, we still just write D′, omitting to display R.
5 Mind the `s: L is the system, Lp is the Lebesgue space, L is the Laplace transform...
6 In the technical literature, these are often referred to as passive electric elements, since they generate no energy.

Resistors dissipate (electric) energy, whereas inductors. and condensers first store and then deliver it. Of course, here
we refer to ideal elements, since real devices combine these different behaviours.

7 They correspond to ODEs, whereas (space-) distributed models correspond to PDEs.
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Acoustic models are also analogous to rheological models. A basic example is the Helmholtz

resonator, which is represented by a state equation analogous to (1.3). 8

(vii) More general linear differential systems. Denoting the input by f and the output by y = L(f)

as above, these systems are characterized by a state equation of the form

P (t,D)y = Q(t,D)f, (1.4)

with P (t,D) and Q(t,D) time-dependent polynomial differential operators. This equation accounts

for a large class of systems used in applications. In particular P and Q may have constant coeffi-

cients. 9 The degree of P is called the order of the system: for instance harmonic oscillators have

order two.

Here we shall not consider nonlinear systems.

1.2 Main properties

Next we outline some relevant properties that linear systems may or may not fulfill: time-

invariance, causality, stability, reality.

Time-invariance. Let us define the time-shift operator f 7→ fτ := f(· − τ), for any admissible

signal f ∈ Φ and any τ ∈ R. A linear system L is called time-invariant (or stationary or translation

invariant) iff it commutes with time-shifts, that is,

fτ ∈ Φ, L(fτ ) = L(f)τ ∀f ∈ Φ,∀τ > 0.10 (1.5)

The systems of the examples (i)–(vi) above are time-invariant, with the exception of (iv); and so

is also (vii) if P and Q have constant coefficients. 11

Causality. A linear system L is called causal if, for any f1, f2 ∈ Φ and τ ∈ R,

f1(t) = f2(t) ∀t < τ ⇒ [L(f1)](t) = [L(f2)](t) ∀t < τ, (1.6)

or equivalently, because of the linearity of L,

f(t) = 0 ∀t < τ ⇒ [L(f)](t) = 0 ∀t < τ. (1.7)

We called signal f causal iff f(t) = 0 for any t < 0. A system is thus causal iff it maps causal

signals to causal signals. We shall see that there is a mathematical reason behind the use of the

term causality for both systems and signals. Just causal systems are physically realizable, so that

the term realizable is also used as a synonymous of causal.

For instance, the systems of the examples (i)–(vii) above are causal.

Stability. Let p ∈ [1,+∞[. We shall say that a linear system L : Φ→ D′ is Lp-bounded if it maps

Φ ∩ Lp to Lp and is bounded, that is,

∃Cp > 0 : ∀f ∈ Φ ∩ Lp, ‖L(f)‖Lp ≤ Cp‖f‖Lp . (1.8)

8 RLC circuits, rheological models, acoustic models and several other models of applied sciences and engineering
correspond to the equation of the damped driven harmonic oscillator. The analogy between these models is widely
exploited in engineering.

9 In Analysis these are called autonomous differential equations.
10 For any f ∈ D′, f(· − τ) = f ∗ δτ . This equality thus also reads L(f ∗ δτ ) = L(f) ∗ δτ .
11 Indeed, translations and linear combinations are shift-invariant. Derivatives are limits of these operations, and

thus have the same property. Inversion preserves shift-invariance.
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Similarly, we shall say that a linear system L : Φ → D′ is C0
b -bounded if it maps Φ ∩ C0

b to L∞

and is bounded, that is, 12

∃C > 0 : ∀f ∈ Φ ∩ C0
b , ‖L(f)‖L∞ ≤ C sup |f |. (1.9)

(Here we assume that f ∈ C0
b rather than L∞, because C∞ is dense in C0

b but not in L∞.)

Finally, we shall say that a linear system L : Φ→ D′ is stable if it is C0
b -bounded and Lp-bounded

for any p ∈ [1,+∞[. In the engineering literature a linear systems is called BIBO stable (BIBO =

bounded input bounded output) if it is L∞-bounded.

Further properties. Time-invariance, causality and stability are the main properties that a

deterministic linear system may satisfy. However, other properties may also be of interest.

A linear system L : Φ→ Ψ is called real if it transforms real signals to real signals, that is, The

examples (i)–(vii) above are all real systems.

A linear system is called instantaneous (or memoryless) if, at each instant t, [L(f)])(t) only

depends on the value of f at the same instant t. Amplifiers are the only memoryless real linear

systems.

A linear system L is called invertible if the inverse operator L−1 exists. L−1 is linear; moreover,

if L is time-invariant (causal, real, resp.), then L−1 is also time-invariant (causal, real, resp.).

1.3 Functional set-up

Some heuristics. Let us set h̃(·, τ) = L(δτ ) for any real τ . Note that f = f ∗ δ =
∫
R f(τ)δτ dτ for

any f ∈ Φ. 13 We may guess that

L(f) = L
(∫

R
f(τ)δτ dτ

)
(?)
=

∫
R
f(τ)L(δτ ) dτ. (1.10)

If L is time-invariant then L(δτ ) = L(δ)τ , whence

L(f) =

∫
R
f(τ)L(δτ ) dτ =

∫
R
f(τ)L(δ)τ dτ = f ∗ L(δ). (1.11)

The second equality of (1.10) must be justified. Here we justify this result via a different proce-

dure.

Lemma 1.1 If U : D → C0 is linear, sequentially continuous 14 and time-invariant, then there

exists one and only one T ∈ D′ such that

U(f) = T ∗ f ∀f ∈ D. (1.12)

* Proof. Let us set T (f̌) = [U(f)](0). It is easy to see that T is a distribution. For any f ∈ D
and x ∈ R, let us set fx = f(· − x) and f̌(x) = f(−x). As U is time-invariant, we have 15

[U(f)](−x) = U(f)x(0) = [U(fx)](0) = T [(fx)ˇ ] = T [(f̌)x] = (T ∗ f)(−x). (1.13)

12 In the engineering literature a linear systems is called BIBO stable (BIBO = bounded input bounded output) if
it is L∞-bounded.

13 This is not an integral, but occasionally in this chapter we shall use the integral notation because of its readability,
consistently with the engineering literature. (By δτ we denote the Dirac mass at the point τ .)

14 Henceforth we shall omit the specification sequentially.
15 As we saw, fx = f ∗ δx. We can then rewrite this formula as follows:

[U(f)](−x) = [U(f) ∗ δx)](0) = [U(f ∗ δx)](0) = T [(f ∗ δx)ˇ ] = T (f̌ ∗ δx) = (T ∗ f)(−x).
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For several results we shall assume that

either E ′ ⊂ Φ ⊂ S ′, L : Φ→ S ′, or E ′ ∩DL ⊂ Φ ⊂ DL, L : Φ→ DL, (1.14)

so that inputs and outputs of either system are Fourier transformable in the first case, Laplace

transformable in the second case. Moreover, Dirac masses are admissible inputs in either case. 16

• Theorem 1.2 (Convolution systems) Let E ′ ⊂ Φ ⊂ D′ with continuous injections, let L : Φ→ D′
be linear, continuous and time-invariant, and assume that

the restriction L
∣∣
D maps D to C0 and is continuous. (1.15)

Then 17

L(f) = L(δ0) ∗ f ∀f ∈ E ′, (1.16)

L(δ0) ∈ L1 ⇒ L(f) = L(δ0) ∗ f ∀f ∈ Φ ∩
(⋃

p∈[1,+∞[ L
p ∪ C0

b

)
. (1.17)

In this case L is called a convolution system. Conversely it is easily checked that any convolution

system is time-invariant.

* Proof. (i) Let T ∈ D′ be as in Lemma 1.1, which we can apply because of (1.15). We claim that

T = L(δ0) (∈ D′). (1.18)

Let {ρn} be a sequence of compactly supported mollifiers, so that

δ0 ∗ ρn ∈ C∞ ∩ E ′ ⊂ Φ, δ0 ∗ ρn → δ0 in E ′ ∀n ∈ N.

As L : Φ→ D′ and the convolution D′ × E ′ → D′ are continuous, we have

L(δ0 ∗ ρn)→ L(δ0), L(δ0 ∗ ρn) = T ∗ (δ0 ∗ ρn)→ T ∗ δ0 = T in D′. (1.19)

The claim (1.18) is thus established.

As D is (sequentially) dense in E ′, (1.12) yields (1.16) for any f ∈ E ′, too. (This can be proved

by an approximation procedure analogous to the one that we just used.) (1.16) is thus established.

If L(δ0) is compactly supported, then we can extend this property to any f ∈ D′.
(ii) By (1.16) and by the Young Theorem ??, if L(δ0) ∈ L1 then

‖L(δ0) ∗ f‖Lp ≤ ‖L(δ0)‖L1‖f‖Lp ∀f ∈ D, ∀p ∈ [1,+∞[, (1.20)

‖L(δ0) ∗ f‖L∞ ≤ ‖L(δ0)‖L1‖f‖L∞ ∀f ∈ C0
b . (1.21)

As D is dense in Lp for any p ∈ [1,+∞[ as well as in C0
b , (1.17) follows. 2

16 This selection of the functional set-up is a choice of this presentation. Most of the engineering literature neither
specifies the domain of definition of linear system, nor mentions functions space.

(Whenever we state an inclusion between spaces, we imply that the injection is continuous.)
17 In the engineering literature some authors invert the implication (1.17). But this fails for amplifiers and delay

systems.
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Remarks 1.3 (i) As δ0 ∈ E ′, we assumed E ′ ⊂ Φ so that L(δ0) meaningful.

(ii) In (1.16) we assumed f ∈ E ′ since E ′ ∗ D′ ⊂ D′, whereas D′ ∗ D′ is meaningless. Assuming

L(δ0) ∈ E ′ would be too restrictive for applications, but the Young Theorem allows one to overcome

restrictions on the support when dealing with Lp-spaces.

(iii) In the engineering literature the integrability of L(δ0) is often assumed, and part (ii) of this

theorem is often applied. Part (i) applies e.g. to amplifiers and delay systems, for which respectively

L(δ0) = Aδ0 and L(δ0) = δa. 2

Although some elements of f ∈ Φ \ E ′ may not be representable as a convolution, by the next

statement any output can be approximated by a sequence of convolution products.

Proposition 1.4 Let L be as in Theorem 1.2, and {ρn} be a sequence of compactly supported

mollifiers. Then for any f ∈ Φ, setting fn = f ∗ ρn for any n,

L(δ0) ∗ fn → Lf in D′. (1.22)

Proof. fn ∈ E ′ for any n, and fn → f in D′. By (1.16) and by the continuity of L, therefore

L(δ0) ∗ fn = L(fn)→ Lf in D′. 2

Corollary 1.5 Under the assumptions of Theorem 1.2, L(δ0) characterizes the system L. More

precisely, for any couple of systems L1, L2 : Φ → D′ as in Theorem 1.2, if L1(δ0) = L2(δ0) then

L1 = L2.

Moreover

the system L is causal iff the signal L(δ0) is causal, (1.23)

the system L is real iff the signal L(δ0) is real. (1.24)

Proof. The first statement stems from the foregoing Proposition.

If f ∈ D and L(δ0) are causal, then L(f) = f ∗L(δ0) is also causal. This property is then extended

to any f ∈ Φ by the latter Proposition. The proof of the converse and of the statement on reality

are obvious. 2

Let us denote the unit step function by u, which is the customary notation of the Heaviside

function in signal theory.

Proposition 1.6 Let L be as in Theorem 1.2. If u ∈ Φ and h := L(δ0) ∈ L1, then

h1(t) := [L(u)](t) =

∫ t

−∞
h(r) dr ∈ L∞ ∀t ∈ R. (1.25)

Proof. By (1.17),

h1(t) = (u ∗ h)(t) =

∫
R
u(t− r)h(r) dr =

∫ t

−∞
h(r) dr ∀t ∈ R, (1.26)

and |h1(t)| ≤ ‖h‖L1 . 2

By (1.26), Dh1 = h. This step response thus characterizes the system, just as the impulse

response h.
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2 Filters and Transfer Functions

In this section we define (possibly noncausal) filters, we apply the Fourier transform, and briefly

illustrate energetic aspects. We then use the Laplace transform to deal with causal signals, without

assuming Lp-boundedness.

Filters. 18 The term filter may have two meanings. In signal processing (which is an engineering

discipline) a filter is a physical device which modifies the signal, typically by acting on its spectral

components. This process is called filtering. Examples include amplifiers, RLC circuits, derivators,

integrators, delayed circuits, and the many systems that are constructed by composing these basic

elements according to certain rules, as we shall see ahead.

In signal analysis (the theoretical counterpart of signal processing), a filter is a time-invariant

linear and stable system. Here we call L a stable filter iff the following holds: 19

(i) Φ is a topological linear space and E ′ ⊂ Φ ⊂ S ′ with continuous injections,

(ii) L : Φ→ S ′ is linear, continuous and time-invariant,

(iii) the restriction L
∣∣
D maps D to C0 and is continuous,

(iv) L is stable in the sense of (1.8) and (1.9).

By assuming E ′ ⊂ Φ and (iii) we guarantee that δ0 ∈ Φ, and we get (1.16), (1.17).

Examples include the linear systems (i)–(vi) of Section 1, with the exception of derivators (here

L(δ0) 6∈ L1) and integrators (they are not stable). Moreover, a state equation P (D)u = Q(D)f

represents a filter if P (iξ) 6= 0 for any ξ ∈ R; see Proposition ?? (Prop 5.1 of the Distribution chap-

ter) For instance, damped harmonic oscillators, RLC circuits and rheological models are differential

filters of order two.

Most typical filters select certain frequencies of the input, and annihilate (or at least strongly

reduce) the others. For instance, low-pass, high-pass, band-pass filters select a range of frequencies,

that are respectively either below or above a certain threshold, or confined to a prescribed band.

Note that any filter that selects real frequencies is not causal.

A filter is characterized by the impulse responses 20

h = L(δ0) in time, H = F(h) in frequency. (2.1)

H is called the transfer function, or the spectrum of the system. 21

Remarks 2.1 (i) Denoting by R(ξ) and iX(ξ) respectively the real and imaginary part of H(ξ),

by A(ξ) its modulus, and by ϕ(ξ) its phase, we have

H(ξ) = R(ξ) + iX(ξ) = A(ξ)e2πiϕ(ξ) ∀ξ ∈ R. (2.2)

18 The theory of filters has two main actors: the filter L and the transform, F or L. The transform just concerns the
representation of the signal, so it is essentially ... a linguistic matter (equipped with a remarkable body of calculus,
of course).

19 This definition is customized for (possibly noncausal) signals and for the Fourier transform. Dealing with causal
signals, we shall amend this definition.

20 The notation H should not be confused with that of the Heaviside function, or unit step. In this chapter we
shall denote the latter by u, consistently with the engineering literature.

21 As we saw, the Fourier transform of a signal is called its spectrum. It is natural to use the same term for the
system and for signals: indeed (see Theorem 2.2 ahead) the role of the system is somehow comparable to that of the
input signal.

The denomination transfer function is most often used for the Laplace transform, see ahead. In the theory of
differential equations, the impulse response is called the fundamental or elementary solution of the equation.
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In Signal Processing the functions A and ϕ are respectively called the amplitude spectrum and the

phase spectrum of the system. A(ξ) and φ(ξ) are also called the gain and the phase shift of the

system at the frequency ξ.

(ii) By (1.26) and (2.1),

H(0) =

∫
R
h(t) dt = lim

t→+∞
h1(t). (2.3)

|H(0)| represents how much the system asymptotically amplifies the unit step, and is called the

gain of the system tout court. This is quite relevant for applications, since in electronic circuits the

transient is typically quick and of minor interest. 2

The next result is at the basis of the use of operational calculus in Signal Analysis. Here we

state it for stable filters using the Fourier transform, and ahead for causal filters using the Laplace

transform.

• Theorem 2.2 (Fundamental formula of stable filters) Let L : Φ → S ′ be a filter, let f ∈ Φ ∩
Lp (p ∈ [1, 2]), and define the Fourier transformed functions F := F(f), G := F(L(f)), H :=

F(L(δ0)). Then

G(ξ) = H(ξ)F (ξ) q∀ξ ∈ R, and in Lp
′
. (2.4)

Proof. L(f) ∈ Lp by the axiom (iv) of filters. Hence F,G ∈ Lp
′
, by the Hausdorff-Young

Theorem ??. 22

For p = 1, (2.4) follows from the Convolution Theorem of [Fourier section]. This is then extended

by continuity to Lp spaces, since Lp ∩ L1 is dense in Lp. 2

Corollary 2.3 If L : Φ→ S ′ is a filter, then: 23

(i) For any p ∈ [1, 2],

FL : Φ ∩ Lp → Lp
′

: f 7→ F(L(f)) is linear and continuous. (2.5)

Moreover,

‖F(L(f))‖Lp′ (R) ≤ ‖H‖L∞(R)‖f‖Lp(R) ∀f ∈ Φ ∩ Lp. (2.6)

The norm of the operator FL is thus bounded by ‖H‖L∞(R) (≤ ‖h‖L1(R)).

(ii) Assuming that L2 ⊂ Φ and omitting restrictions,

L̂ := FLF−1 : L2
t → L2

t is linear and continuous. (2.7)

Moreover, L̂ is multiplicative:

[L̂(F )](ξ) = H(ξ)F (ξ) q∀ξ ∈ R,∀F ∈ L2
ξ . (2.8)

The norm of the operator L̂ is thus ‖H‖L∞(R) (≤ ‖h‖L1(R)).

(We can state part (ii) just for p = 2, since for the other p F is not surjective.)

22 As usual, with p′ = p/(p− 1) if p 6= 1 and ∞′ = 1.
23 One should not confuse L (the customary notation for linear systems) with the Laplace transform L or the

Lebesgue space Lp.

8



Remarks 2.4 (i) By Theorem 2.2, the system acts independently on each spectral component

of the input signal. In this sense, the Fourier transform is a spectral resolution (i.e., a sort of

diagonalization) of any filter. 24

(ii) Because of the symmetry between signals and filter of (2.4) and of other results, in the

engineering literature one often deals with filters and signals on the same footing. So for instance

terms like spectrum, energy gain, causal and others are used for both signals and systems.

(iii) For any γ ∈ F(L1) (⊂ C0
b ), h = F̃(γ) is the impulse response of a filter, and this has the

spectrum H = F(h) = γ.

It is not easy to characterize F(L1), but in practice this does not prevent engineers from designing

and then efficiently producing electronic filters for a desired shape of their spectrum. 2

Energy of signals. Let us consider an electrical current flowing along a conducting wire having

unit resistance. If f(t) is the current density at any instant t ∈ R and f ∈ L2, then ‖f‖2L2 coincides

with the total energy of the signal (namely, the energy content of that current). For any real a, b

with a < b,
∫ b
a |f(t)|2 dt is thus the energy of the signal in the time interval ]a, b[. Signals of L2 are

then named energy signals. Accordingly, |f(t)|2 is regarded as the time-density of energy at the

instant t.

As by the Plancherel Theorem∫
R
|F (ξ)|2 dξ =

∫
R
|f(t)|2 dt (F := F(f)), (2.9)

the energy is similarly partitioned with respect to frequency. |F (ξ)|2 is thus interpreted as the

frequency-density of energy at the frequency ξ, and the function ξ 7→ |F (ξ)|2 is called the energy

spectrum of the signal.

Under the assumptions of Theorem 2.2 for p = 2, the system transforms the energy spectrum of

the signal as follows:

|G(ξ)|2 = |H(ξ)|2 |F (ξ)|2 q∀ξ ∈ R. (2.10)

The function |H|2 is then called the power spectrum of the system.

Thus the system acts independently on each spectral component of the energy. In this sense,

the Fourier transform diagonalizes the action of any filter not only on the signals but also on the

energy.

Laplace transform of causal filters. So far in this section we considered stable filters and

applied the Fourier transform. Dealing with causal signals, we define L a causal filter iff the

following holds:

(i) Φ is a topological linear space and E ′ ∩DL ⊂ Φ ⊂ DL with continuous injections,

(ii) L : Φ→ DL is linear, continuous, time-invariant and causal,

(iii) the restriction of L maps Φ ∩ D to C0 continuously.

Note that then δ0 ∈ Φ and h := L(δ0) ∈ DL. Let us denote its Laplace transform by H̃: 25

H̃(s) := [L(h)](s) =

∫
R
h(t)e−st dt ∀s ∈ Cλ(h). (2.11)

24 This actually holds for any linear system. Here time-invariance enters just in expressing the continuity constant
in terms of the transform of h = L(δ0).

25 This integral should be replaced by a duality pairing: in section [Laplace transform of distributions] we formulated
this definition more precisely.
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We know that this function is holomorphic in the half-plane of convergence Cλ(h). As we did for

the Fourier transform, here also we call H̃ the transfer function. As we know, if h := L(δ0) ∈ L1,

H̃ extends the function H of (2.1); more precisely,

H̃(iξ) = [L(h)](iξ) =

∫
R
h(t)e−iξt dt = [F(h)](ξ/(2π)) = H(ξ/(2π)) ∀ξ ∈ R. (2.12)

Theorem 2.5 (Fundamental formula of causal filters) Let L : Φ→ DL be a causal filter, let f ∈ Φ,

and define the Laplace transformed functions F := L(f), G := L(L(f)), H̃ := L(L(δ0)). Then

λ(L(f)) ≤ max{λ(L(δ0)), λ(f)}, G(s) = H̃(s)F (s) ∀s ∈ Cλ(L(f)). (2.13)

This obviously entails

|G(s)|2 = |H̃(s)|2 |F (s)|2 ∀s ∈ Cλ(L(f)). (2.14)

Thus function |H̃|2 is the power spectrum of the causal system.

3 Filter Composition

Filters can be arranged in several ways. In this section we deal with the basic connections in parallel,

in series, and in retroaction (or feedback) of two filters L1 and L2, derive the state equation and

the transfer function of each of these composed systems.

We also briefly address the stability of this model under variations of the transfer functions of

the components of the system. This is relevant for applications, since real device always exhibit

imperfections. 26

Here first we deal with stable filters, and use the Fourier transform; afterwards we outline the

modifications that are needed to apply the Laplace transform to casual filters.

(i) Parallel connection. The composed system L is represented by the following block diagram,

which represents the signal path. The bifurcation of the path does not represent any partition of

this flow of information. For instance this applies if the input signal represents a tension rather

than a current density (which are intensive and extensive quantities, respectively). Consistently

with the literature, in the diagram we represent the filters by their transfer function in frequency.

Note the presence of the adder, which simply sums the inputs.

(2.10)

(2.11)

(b)

The order of cascaded LTI systems can be interchanged without changing the overall effect.

LTI Systems in Parallel

If two or more LTI systems are in parallel with one another, an equivalent system is one that is defined as the sum of
these individual systems.

Figure 2.15. Parallel LTI Systems

(a)

(b)

Parallel systems can be condensed into the sum of systems.

Example 2.5. 

Consider the system H 3 in which

H 3 ( f ( t ) ) = 2 f ( t )

for all signals f . Given any two signals f,g and scalars a,b

H 3 ( a f ( t ) + b g ( t ) ) ) = 2 ( a f ( t ) + b g ( t ) ) = a 2 f ( t ) + b 2 g ( t ) = a H 3 ( f ( t ) ) + b H 3 ( g ( t ) )

for all real t . Thus, H 3 is a linear system. For all real T and signals f ,

26 * Above we referred to stability with respect to variations of signal. This corresponds to the following question:
does a small variation of the input (e.g., a noise) entail a small variation of the output? One may also consider a
different type of stability, in which the system itself is varied, or rather its transfer function: in a composed system,
does a small variation of the Hi’s entail a small variation of the overall transfer function H?
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Here Φ1 = Φ2 =: Φ, and the system L is defined by the map 27

L : f 7→ g = L1(f) + L2(f) ∀f ∈ Φ. (3.1)

For any p ∈ [1, 2] and any f ∈ Φ ∩ Lp, setting F := F(f), G := F(L(f)), Hi := F(hi), we have

g(t) = [(h1 + h2)∗f ](t) q∀t ∈ R, (3.2)

G(ξ) = [H1(ξ) +H2(ξ)]F (ξ) q∀ξ ∈ R. (3.3)

Proposition 3.1 (Parallel connection) For i = 1, 2, let Li : Φ → S ′ be a filter with hi = Li(δi) ∈
L1. Then L : f 7→ g = L1(f) + L2(f) is a filter with impulse response

h = h1 + h2 in time, H = H1 +H2 in frequency. (3.4)

Small pointwise variations of h1 and h2 entail a small pointwise variation of h; the same holds

in the norm of Lp for any p ∈ [1,+∞]. This also applies to H pointwise and in Lp, for any

p ∈ [2,+∞].

(Here p is confined to [2,+∞] because of the Hausdorff-Young Theorem.)

Remark 3.2 The same result applies to causal filters Li : Φ → DL (i = 1, 2), using the Laplace

transform. 2

(ii) Series (or cascade or tandem) connection. Let us assume that L1(Φ1) ⊂ Φ2. The

composed system L is represented by the following block diagram.

(2.10)

(2.11)

(b)

The order of cascaded LTI systems can be interchanged without changing the overall effect.

LTI Systems in Parallel

If two or more LTI systems are in parallel with one another, an equivalent system is one that is defined as the sum of
these individual systems.

Figure 2.15. Parallel LTI Systems

(a)

(b)

Parallel systems can be condensed into the sum of systems.

Example 2.5. 

Consider the system H 3 in which

H 3 ( f ( t ) ) = 2 f ( t )

for all signals f . Given any two signals f,g and scalars a,b

H 3 ( a f ( t ) + b g ( t ) ) ) = 2 ( a f ( t ) + b g ( t ) ) = a 2 f ( t ) + b 2 g ( t ) = a H 3 ( f ( t ) ) + b H 3 ( g ( t ) )

for all real t . Thus, H 3 is a linear system. For all real T and signals f ,

This is defined by the map 28

L : f 7→ g = L2(L1(f)) ∀f ∈ Φ1. (3.5)

For any p ∈ [1, 2] and any f ∈ Φ1 ∩ Lp, setting F := F(f), G := F(L(f)), Hi := F(hi) (i = 1, 2),

we have

g(t) = [h2∗h1∗f ](t) q∀t ∈ R, (3.6)

G(ξ) = H2(ξ)H1(ξ)F (ξ) q∀ξ ∈ R. (3.7)

(We can write h1∗h2∗f since in L1 the convolution is associative.)

Proposition 3.3 (Series connection) Let L1 : Φ1 → Φ2 and L2 : Φ2 → S ′ be filters with hi :=

Li(δ0) ∈ L1 for i = 1, 2. Then L : f 7→ g = L2(L1(f)) is a filter with impulse response

h = h2∗h1 in time, H = H2H1 in frequency. (3.8)

Small variations of h1 and h2 in L1 entail a small variation of h in L1. The same applies to H
in C0

b , and also for any ξ ∈ R.

27 This formula applies also if L1 and L2 are nonlinear, or time-varying systems, or unstable systems.
28 This formula applies also if L1 and L2 are nonlinear, or time-varying systems, or unstable systems.
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Proof. By the Young Theorem, h = h2 ∗h1 ∈ L1, hence L is a filter. By applying the Fourier

transform, the second equality of (3.8) follows pointwise in C0
b .

Let us denote by ∆hi a variation of hi (i = 1, 2), and by ∆h the corresponding variation of

h = h2∗h1; that is,

∆h = (h2 + ∆h2)∗(h1 + ∆h1)− h2∗h1.

By the Young Theorem,

‖∆h‖L1 ≤ ‖∆h2∗h1‖L1 + ‖h2∗∆h1‖L1 + ‖∆h2∗∆h1‖

≤ ‖∆h2‖L1‖h1‖L1 + ‖h2‖L1‖∆h1‖L1 + ‖∆h2‖L1‖∆h1‖L1 .
(3.9)

Thus ‖∆h‖L1 depends on ‖∆h1‖L1 and ‖∆h2‖L1 with continuity.

The statement concerning H is obvious. 2

Remarks 3.4 (i) An analogous result holds if L1 : Φ1 → Φ2 ⊂ DL and L2 : Φ2 → DL are

assumed to be causal filters. In this case the Laplace transform is used, and no reference is made

to Lp-spaces. Details are left to the Reader.

(ii) Some further properties can be proved. For instance, if

p, q ∈ [1, 2], r ∈ [1,+∞], p−1 + q−1 = 1 + r−1, h1 ∈ L1 ∩ Lp, h2 ∈ L1 ∩ Lq, (3.10)

then

H1 ∈ C0
b ∩ Lp

′
, H2 ∈ C0

b ∩ Lq
′
, (3.11)

h = h2∗h1 ∈ Lr, ‖h‖Lr ≤ ‖h2‖Lp ‖h1‖Lq . (3.12)

Moreover, (p′)−1 + (q′)−1 = (r′)−1 by the second inequality of (3.10). By (3.9) and (3.11), then

H ∈ C0
b ∩ Lr

′
, ‖H‖Lr′ ≤ ‖H1‖Lp′ ‖H2‖Lq′ . (3.13)

Corresponding results for variations of h1, h2 can be derived as above. 2

(iii) Feedback connection. Let us assume that L1, L2 are two filters as above, with L1(Φ1) ⊂ Φ2

and L2(Φ2) ⊂ Φ1. The feedback connection L is represented by the following block diagram.

3

First let's take a look at what's feedback: It's portion of the output that system takes into account when determining next output. From systems point of view it
would look something like this:

So let's say that our amplifier is trying to multiply the input signal X by a factor of say 10. So ideally it would try to set Y=10X. The system will have a
component which amplifies the signal and a component that takes feedback into account.

In case the feedback is positive we'll have an amplification "force" that will try to increase the output signal and the feedback "force" that will again try to
amplify the signal. The result of that is that we'll get signal that tends to go to infinity (or in our practical example to as high value as the amplifier can output).
Even if we null the input signal, the positive feedback will result in the increase of output signal.

In case of negative feedback, we'll have an amplification "force" that will try to amplify the signal and the feedback "force" that will try to attenuate the output
signal. The gain of whole system would be set at the point at which they cancel out. This way, when there's no input signal, the feedback will terminate the
output signal.

answered Feb 19 '13 at 18:50

AndrejaKo
16.9k 19 87 164

As we pointed out for parallel combinations, the bifurcation of the path does not represent any

partition of this flow of information.

We shall derive the transfer function of the composed system, and shall compare its action with

that of the forward element L1 alone.

The engineering literature distinguishes between negative and positive feedback. In either system

we have the following signals in time:

f : the input of the composed system,

12



g: the output of the feedforward element L1, which coincides with the input of the feedback

element L2, and also coincides with the output of the composite system,

`: the output of the feedback element L2; this and f are the two inputs of the combiner element

(either an adder or a subtractor);

m: the output of the combiner element, which is the input of L1.

The feedback connection corresponds to the following equations:

m = f ± `, g = L1(m), ` = L2(g), (3.14)

with the plus sign for negative feedback, the minus for positive feedback. By eliminating ` and m,

we get a single equation:

g = [L1(f − L2(g))] for negative feedback,

g = [L1(f + L2(g))] for positive feedback.
(3.15)

The simple ODE y′ + ay = f can be represent as the state equation of a feedback system.

* Remarks 3.5 (i) Via Fourier transform, the signals f, g, `,m may also be represented as func-

tions of frequency: f̂ , ĝ, ̂̀, m̂, resp.. Setting L̄i = FLiF−1 (i = 1, 2), the equations (3.14) and (3.15)

yield

m̂ = f̂ ± ̂̀, ĝ = L̄1(m̂), ̂̀= L̄2(ĝ),

ĝ = [L̄1(f̂ ∓ L̄2(ĝ))].
(3.16)

Thus the system equations do not depend on the form of representation of the signals. Actually,

the input-output relations concern signals rather than functions, as it is well known by engineers.

(ii) The formulation (3.16) does not depend on the linearity of the operators L1 and L2, but

just on the linearity of the operations involved in the composition of these elements (here the

feedback arrangement). Therefore (3.16) also applies to nonlinear operators. However, our analysis

will rest on linearity, which entails the multiplicative representation of systems in frequency, see

Theorem 2.2. 2

Negative feedback. Because of the stability of the filters, for any p ∈ [1,+∞[ and any f ∈ Φ1∩Lp,

g ∈ Φ2 ∩ Lp, `,m ∈ Φ1 ∩ Lp. (3.17)

As L1(m) = m ∗ h1 and L2(g) = g ∗ h2, (3.15)1 yields

g(t) = [h1 ∗ (f − h2 ∗ g)](t) q∀t ∈ R. (3.18)

By applying the Fourier transform and setting F := F(f), G := F(L(f)), Hi := F(hi) (i = 1, 2),

we get the algebraic equation

G(ξ) = H1(ξ)[F (ξ)−H2(ξ)G(ξ)] q∀ξ ∈ R, (3.19)

that is, provided that the denominator does not vanish,

G(ξ) =
H1(ξ)

1 +H1(ξ)H2(ξ)
F (ξ) q∀ξ ∈ R. (3.20)
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Thus L is a filter with impulse response

H(ξ) =
H1(ξ)

1 +H1(ξ)H2(ξ)
∀ξ ∈ R (in frequency), (3.21)

h(t) = F−1

(
H1(ξ)

1 +H1(ξ)H2(ξ)

)
(t) q∀t ∈ R (in time). (3.22)

Next we assume that

H1(ξ),H2(ξ) ∈ R, H1(ξ),H2(ξ) ≥ 0 ∀ξ ∈ R, (3.23)

so that the filters L1 and L2 modify each spectral amplitude leaving the phase unchanged. This

condition excludes delays in these two filters, since a delay in the impulse response shifts the phase

of the spectrum, cf. (??). [a formula of Fourier chapter]

Proposition 3.6 (Negative feedback) Let L1 : Φ1 → Φ2 and L2 : Φ2 → Φ1 be filters with hi :=

Li(δ0) ∈ L1 for i = 1, 2, and let H1,H2 ≥ 0 pointwise in R. Then the negative feedback operator L

is a filter with impulse responses (3.21) and (3.22). Moreover,

(0 ≤) H(ξ) ≤ H1(ξ) ∀ξ ∈ R, (3.24)

‖H‖L2 ≤ ‖H1‖L2 , ‖h‖L2 ≤ ‖h1‖L2 . (3.25)

Proof. (3.24) stems from (3.21) and (3.23). This entails the first inequality of (3.25). The second

one follows from the Plancherel Theorem. 2

Remarks 3.7 (i) The same result holds if L1 : Φ1 → Φ2 and L2 : Φ2 → Φ1 are causal filters, with

Φ1,Φ2 ⊂ DL. In this case the Laplace transform is applied, and Lp-spaces are not used. Details

are left to the Reader.

(ii) By (3.25), for any frequency the gain of the composed system is smaller than that of L1. So the

presence of L2 reduces the effect of L1, and has a stabilizing effect, as we already noticed. For this

reason, negative feedback are widely used in electronic devices, for instance in servomechanisms.

For the impulse response apparently the analogous comparison fails. 29 2

* Reversed systems. From a mathematical point of view, systems may also act backward; namely,

the flow of information can be reversed. By Theorem 2.2, the inverse operator L−1
i corresponds to

the transfer function 1/Hi for i = 1, 2, assuming that Hi 6= 0 for any real ξ.

The inverse of the feed-back system is defined by the inverse operator L−1 : g 7→ f . Here the

signal σ that is produced by L−1
2 merges the output of L−1

1 rather than its input: σ is “fed forward”

rather than backward. Indeed L−1 is what is called a feed-forward system.

More specifically, let us consider negative feedback. A simple computation shows that (3.21) is

equivalent to the following relation between inverse transfer functions:

H(ξ)−1 = H1(ξ)−1 +H2(ξ)−1 ∀ξ ∈ R. (3.26)

The feed-forward system L−1 thus coincides with the parallel arrangement of the inverse systems

L−1
1 and L−1

2 . Note that working in reverse the subtractor has become and adder.

Finally, notice that the inverse of a series combination L2◦L1 coincides with the series arrangement

of the inverses: L−1
1 ◦ L

−1
2 .

29 (It may be problematic to state a negative property...)
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